• 제목/요약/키워드: Anti-tumor immunity

검색결과 123건 처리시간 0.025초

Radiobiological mechanisms of stereotactic body radiation therapy and stereotactic radiation surgery

  • Kim, Mi-Sook;Kim, Wonwoo;Park, In Hwan;Kim, Hee Jong;Lee, Eunjin;Jung, Jae-Hoon;Cho, Lawrence Chinsoo;Song, Chang W.
    • Radiation Oncology Journal
    • /
    • 제33권4호
    • /
    • pp.265-275
    • /
    • 2015
  • Despite the increasing use of stereotactic body radiation therapy (SBRT) and stereotactic radiation surgery (SRS) in recent years, the biological base of these high-dose hypo-fractionated radiotherapy modalities has been elusive. Given that most human tumors contain radioresistant hypoxic tumor cells, the radiobiological principles for the conventional multiple-fractionated radiotherapy cannot account for the high efficacy of SBRT and SRS. Recent emerging evidence strongly indicates that SBRT and SRS not only directly kill tumor cells, but also destroy the tumor vascular beds, thereby deteriorating intratumor microenvironment leading to indirect tumor cell death. Furthermore, indications are that the massive release of tumor antigens from the tumor cells directly and indirectly killed by SBRT and SRS stimulate anti-tumor immunity, thereby suppressing recurrence and metastatic tumor growth. The reoxygenation, repair, repopulation, and redistribution, which are important components in the response of tumors to conventional fractionated radiotherapy, play relatively little role in SBRT and SRS. The linear-quadratic model, which accounts for only direct cell death has been suggested to overestimate the cell death by high dose per fraction irradiation. However, the model may in some clinical cases incidentally do not overestimate total cell death because high-dose irradiation causes additional cell death through indirect mechanisms. For the improvement of the efficacy of SBRT and SRS, further investigation is warranted to gain detailed insights into the mechanisms underlying the SBRT and SRS.

Antioxidant activity and anti-tumor immunity by Propolis in mice

  • Choi, In-Sook;Itokawa, Yuka;Maenaka, Toshihiro;Yamashita, Takenori;Mitsumoto, Morihide;Tano, Kaoru;Kondo, Hiroyo;Ishida, Torao;Nakamura, Takashi;Saito, Kiyoto;Terai, Kaoru;Monzen, Hajime;Oshima, Masami;Takeuchi, Tetsuo;Mituhana, Yuicti;Bamen, Kenichi;Ahn, Kyoo-Seok;Gu, Yeun-Hwa
    • Advances in Traditional Medicine
    • /
    • 제5권2호
    • /
    • pp.100-109
    • /
    • 2005
  • In South America, natural products with unknown drug effects are used as folk remedies and for preventive medicine. Among South American natural products, we directed our attention to Propolis, which have been known as medicinal plants, and examined the mechanisms by which these substances affect antioxidant activity, anti-tumor activity and immunoresponse. When the antioxidant activities of Propolis were examined by the DPPH and Rhoudan iron methods, since Propolis contains high levels of flavonoids, it is thought that flavonoids may be responsible for the antioxidant activity in this study. In the examination of immunoenhancement activity, we measured lymphocyte versus polymorphonuclear leukocyte ratios (L/P activity). The number of lymphocytes was significantly increased in groups treated with Proplolis. Specifically, slightly high levels of $IFN-{\gamma}$ were measured in mice bearing the S-180 carcinoma, after administration of Propolis. This strongly suggests that cellular immunity is especially activated by treatment with Propolis, because production of $IFN-{\alpha}$ is limited to the T cells and NK cells stimulated by mitogen and sensitized antigen. $TNF-{\alpha}$ shows a different extent and mechanism of action depending on the target cells. When $TNF-{\alpha}$ was measured in mice bearing the S-180 carcinoma, mice treated with Propolis showed slightly higher $TNF-{\alpha}$ levels as compared to the control group. This suggests that activated macrophages produce $TNF-{\alpha}$ in mice treated with Prapolis, since activated macrophages and lymphocytes are the source of most $TNF-{\alpha}$. When anti-tumor action was examined using two kinds of sarcoma (Ehrlich solid carcinoma and Sarcoma-180 carcinoma), tumor-suppressive ratios after treatment with Propolis was 29.1%. When Sarcoma-180 solid carcinoma was used, tumor-suppressive ratios were 62%. Thus, Propolis showed strong anti-tumor activity against two kinds of solid carcinoma. Taken altogether, this strongly suggests that Propolis enhances original functions of macrophages and NK cells, and as a result, secondarily enhances the immune reaction and suppresses tumor growth.

사물탕이 L1210 세포 이식 및 항암제를 투여한 마우스의 면역세포에 미치는 영향 (Effects of Sa-Mul-Tang on Immunocytes of L1210 Cells-transplanted or Antitumor Drugs-administered Mice)

  • 유동화;권진;오찬호;은재순
    • 생약학회지
    • /
    • 제29권2호
    • /
    • pp.110-119
    • /
    • 1998
  • Sa-Mul-Tang(SMT) consist of Rehmanniae Radix Preparata, Paeoniae Radix Alba, Cnidii Rhizoma and Angelicae Gigantis Radix. In L1210 cells-transplanted BALB/c mice, T-lymphocyte apoptosis, $CD8^+T_C$ cells population in thymocyte and nitric oxide production in macrophage were enhanced, but phagocytic activity was decreased. SMT suppressed T-lymphocyte apoptosis and enhanced CD^4+T_H$ cells population, but did not affect nitric oxide production and phagocytic activity in L1210 cells-transplanted mice. In antitumor drugs-injected mice, T-lymphocyte apoptosis was enhanced, but $CD4^+T_H/CD8^+T_C$, cells population and T-lymphocyte proliferation were decreased. SMT suppressed T-lymphocyte apoptosis, and enhanced $CD8^+T_C$ cells population, T-lymphocyte proliferation and phagocytic activity in vincristine-injected mice. These results suggest that SMT enhances T cell-mediated immunity in L1210 cell-transplanted mice, and enhances T cell-mediated immunity and phagocytic activity in vincristine-injected mice.

  • PDF

Preliminary Proteomic Analysis of Indomethacin's Effect on Tumor Transplanted with Colorectal Cancer Cell in Nude Mice

  • Wang, Yu-Jie;Zhang, Gui-Ying;Xiao, Zhi-Qiang;Wang, Hong-Mei;Chen, Zhu-Chu
    • BMB Reports
    • /
    • 제39권2호
    • /
    • pp.171-177
    • /
    • 2006
  • Nonsteroidal anti-inflammatory drugs such as indomethacin (IN) can exert anti-colorectal cancer (CRC) activity through cyclooxygenase independent mechanism, but the exactly biological mechanism is not completely known. Here we use proteomic tools to investigate the molecular mechanism of this action. First, nude mice bearing tumors derived from subcutaneous injection with human CRC cell line HCT116 were randomly allocated to groups treated with or without indomethacin. Later, tumor lumps were incised and then total proteins extracted. After separated with two-dimensional electrophoresis, thirty-one differently expressed spots were found between IN-treated and non-IN-treated groups, of which 25 spots decreased and 6 spots increased in abundance in IN-treated group. Through matrix-assisted laser desorption ionization time of flight mass spectrometry and then NCBInr and SWISS-PROT databases searching, 12 protein spots were finally identified including galectin-1, annexin A1, annexin IV, trancription factor BTF3A, calreticulin. Most of the identified proteins are correlated with tumor's biological prosperities of proliferation, invasion, apoptosis and immunity, or take part in cell's signal transduction. From above we thought that indomethacin can exert its effect on colorectal cancer through regulating several proteins' expression directly or indirectly. Further study of these proteins may be helpful in founding new targets of drugs for cancer chemotherapy.

Interleukin-18 Synergism with Interleukin-2 in Cytotoxicity and NKG2D Expression of Human Natural Killer Cells

  • Qi, Yuan-Ying;Lu, Chao;Ju, Ying;Wang, Zi-E;Li, Yuan-Tang;Shen, Ya-Juan;Lu, Zhi-Ming
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권18호
    • /
    • pp.7857-7861
    • /
    • 2014
  • Natural killer (NK) cells play an important role in anti-tumor immunity. Interleukin (IL)-18 is an immunoregulatory cytokine that induces potent NK cell-dependent anti-tumor responses when administrated with other cytokines. In this study, we explored the effects of combining IL-18 and IL-2 on NK cytotoxicity as well as expression levels of the NK cell receptor NKG2D in vitro. Freshly isolated PBMCs were incubated for 48 h with IL-18 and IL-2, then CD107a expression on $CD3^-CD56^+$ NK cells was determined by three-colour flow cytometry to evaluate the cytotoxicity of NK cells against human erythroleukemia K562 cells and human colon carcinoma HT29 cells. Flow cytometric analysis was also employed to determine NKG2D expression on NK cells. The combined use of IL-18 and IL-2 significantly increased CD107a expression on NK cells compared with using IL-18 or IL-2 alone, suggesting that the combination of these two cytokines exerted synergistic enhancement of NK cytotoxicity. IL-18 also enhanced NKG2D expression on NK cells when administered with IL-2. In addition, blockade of NKG2D signaling with NKG2D-blocking antibody attenuated the up-regulatory effect of combining IL-18 and IL-2 on NK cytolysis. Our data revealed that IL-18 synergized with IL-2 to dramatically enhance the cytolytic activity of human NK cells in a NKG2D-dependent manner. The results appear encouraging for the use of combined IL-18 and IL-2 in tumor immunotherapy.

Effects of Ampelopsis Radix Extracts on Tumor Immunity

  • Park Seung Man;Cho Jung Hyo;Son Chang Gue;Shin Jang Wo;Lee Yeon Weo;Yoo Hwa Seung;Lee Nam Heon;Yun Dam Hee;Ahn Sang Woo;Cho Chong Kwan
    • 대한한의학회지
    • /
    • 제26권4호
    • /
    • pp.46-55
    • /
    • 2005
  • Objectives: This experimental study was carried out to evaluate the immune modulating and anti-tumor activity of Ampelopsis Radix extracts (ARE). Materials and Methods: To elucidate the effects of ARE on the macrophage and NK cell activity, we analyzed NO production, NK cytotoxicity and gene expressions of cytokine related with macrophage and NK cell activity. Results: ARE activated and promoted macrophages to product NO in part. And, ARE has significant properties to activate macrophages and NK cells by promoting related cytokines like IL-1, IL-12, IFN-$\gamma$, iNOS and TNF-$\alpha$ gene expressions. We also observed that ARE promoted protein expression of IFN-$\gamma$, and TNF-$\alpha$ in mice splenocytes. Conclusions: ARE is an effective herbal drug for immune modulating and anti-cancer by promoting activity of macrophages and NK cells.

  • PDF

Mucosal Immunity Related to CD8+ T Lymphocytes in Children with Helicobacter pylori Gastritis

  • Da Hee Yang;Ha Young Lee;Woohyuk Choi;Chang-Lim Hyun;Ki Soo Kang
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • 제27권1호
    • /
    • pp.26-36
    • /
    • 2024
  • Purpose: We investigated the role of CD8+T cells as host immune factors in pediatric patients with Helicobacter pylori gastritis. Methods: Gastric mucosal tissue and blood samples were collected from 39 children, including 11 children with H. pylori infection and 28 children as controls. Anti-CD8 and anti-T-bet antibodies were used for immunohistochemistry of the gastric mucosa. For the cell surface and intracellular staining, peripheral blood mononuclear cells were stained with anti-IL7Rα, anti-CX3CR1, anti-CD8, anti-T-bet, and anti-IFN-γ antibodies. Cytokines of sera such as tumor necrosis factor alpha (TNF-α) and CX3CL1 were analyzed using enzyme- linked immunosorbent assay (ELISA). Results: In the immunohistochemistry of gastric mucosa, the frequency of CD8+ and T-bet+ T cells cells was higher in the H. pylori-positive group than in the control group (26.9± 7.8% vs. 16.9±3.3%, p<0.001; 5.0±2.5% vs. 2.2±0.7%, p=0.001). Between the control and H. pylori-positive groups, the frequency of IL-7RαlowCX3CR1+ CD8+ and T-bet+ INF-γ+ CD8+ T cells were not significantly different between surface and intracellular staining, respectively (40.4±24.0% vs. 38.2±17.8%, p=0.914; 40.4±24.0% vs. 38.2±17.8%, p=0.914). In the ELISA, no significant differences in TNF-α and CX3CL1 concentrations were observed between the control and H. pylori-positive groups (34.3±12.1 pg/mL vs. 47.0±22.6 pg/mL, p=0.114/0.5± 0.1 pg/mL vs. 0.5±0.1 pg/mL, p=0.188). Conclusion: CD8+ T and Th1 cells, which secrete IFN-γ, might play important roles in the mucosal immunity of the stomach in children with H. pylori infection.

Influence of Autologous and Homologous Blood Transfusion on Interleukins and Tumor Necrosis Factor-α in Peri-operative Patients with Esophageal Cancer

  • Xing, Yue-Li;Wang, Yan-Chun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권18호
    • /
    • pp.7831-7834
    • /
    • 2014
  • Objective: To explore the influence of different ways of blood transfusion on the expression levels of interleukins (IL) and tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) inperi-operative patients with esophageal cancer. Materials and Methods: A total of 80 patients with esophageal cancer who underwent radical operations were selected as study patients and randomly divided into an observation group (treated with autologous blood transfusion) and control group (with homologous blood transfusion). Changes of intra-operative indexes and peri-operative blood indexes, from hemoglobin (Hb) and hematocrit value (Hct), to levels of inflammatory factors like interleukins-6 (IL-6), IL-8, IL-10 and tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) were compared. Results: Operations for patients in both groups were successfully conducted, and no significant differences in mean surgical duration and intra-operative hemorrhage volume, fluid infusion volume and blood transfusion volume were detected (p>0.05). Compared with values before surgery, Hb and Hct levels decreased significantly while white blood cell count (WBC) increased 1, 5 and 7 d after operation (p<0.05, p<0.01). In addition, WBC was apparently higher in observation group than in control group 5 and 7 d after operation (p<0.01). Compared with before surgery, in the observation group, levels of IL-6, IL-8 and IL-10 had no significant differences after operation (P>0.05), but TNF-${\alpha}$ level increased y (p<0.01), whereas in control group, IL-6 level had no significant difference (p>0.05), IL-8 level decreased obviously (p<0.05), IL-10 level increased markedly first and then decreased gradually as time passed but its level remained elevated (p<0.01), and TNF-${\alpha}$ level increased first and then decreased, and there was no significant difference 7 d after operation (p>0.05). Conclusions: Decreased IL-8 and increased IL-10 levels are two important reasons for immunosuppression after homologous blood transfusion, whereas autologous blood transfusion can alleviate this while increasing the TNF-${\alpha}$ level, which also has potential to improve anti-tumor immunity in the human body.

TNF-${\alpha}$ Up-regulated the Expression of HuR, a Prognostic Marker for Ovarian Cancer and Hu Syndrome, in BJAB Cells

  • Lee, Kyung-Yeol
    • IMMUNE NETWORK
    • /
    • 제4권3호
    • /
    • pp.184-189
    • /
    • 2004
  • Background: Hu syndrome, a neurological disorder, is characterized by the remote effect of small cell lung cancer on the neural degeneration. The suspicious effectors for this disease are anti-Hu autoantibodies or Hu-related CD8+ T lymphocytes. Interestingly, the same effectors have been suggested to act against tumor growth and this phenomenon may represent natural tumor immunity. For these diagnostic and therapeutic reasons, the demand for antibodies against Hu protein is rapidly growing. Methods: Polyclonal and monoclonal antibodies were generated using recombinant HuR protein. Western blot analyses were performed to check the specificity of generated antibodies using various recombinant proteins and cell lysates. Extracellular stimuli for HuR expression had been searched and HuR-associated proteins were isolated from polysome lysates and then separated in a 2-dimensional gel. Results: Polyclonal and monoclonal antibodies against HuR protein were generated and these antibodies showed HuR specificity. Antibodies were also useful to detect and immunoprecipitate endogenous HuR protein in Jurkat and BJAB. This report also revealed that TNF-${\alpha}$ treatment in BJAB up-regulated HuR expression. Lastly, protein profile in HuR-associated mRNAprotein complexes was mapped by 2-dimensional gel electrophoresis. Conclusion: This study reported that new antibodies against HuR protein were successfully generated. Currently, project to develop a diagnostic kit is in process. Also, this report showed that TNF-${\alpha}$ up-regulated HuR expression in BJAB and protein profile associated with HuR protein was mapped.

New opportunities for nanoparticles in cancer immunotherapy

  • Park, Wooram;Heo, Young-Jae;Han, Dong Keun
    • 생체재료학회지
    • /
    • 제22권4호
    • /
    • pp.211-220
    • /
    • 2018
  • Background: Recently, cancer immunotherapy has become standard for cancer treatment. Immunotherapy not only treats primary tumors, but also prevents metastasis and recurrence, representing a major advantage over conventional cancer treatments. However, existing cancer immunotherapies have limited clinical benefits because cancer antigens are often not effectively delivered to immune cells. Furthermore, unlike lymphoma, solid tumors evade anti-cancer immunity by forming an immune-suppressive tumor microenvironment (TME). One approach for overcoming these limitations of cancer immunotherapy involves nanoparticles based on biomaterials. Main body: Here, we review in detail recent trends in the use of nanoparticles in cancer immunotherapy. First, to illustrate the unmet needs for nanoparticles in this field, we describe the mechanisms underlying cancer immunotherapy. We then explain the role of nanoparticles in the delivery of cancer antigens and adjuvants. Next, we discuss how nanoparticles can be helpful within the immune-suppressive TME. Finally, we summarize current and future uses of nanoparticles with image-guided interventional techniques in cancer immunotherapy. Conclusion: Recently developed approaches for using nanoparticles in cancer immunotherapy have enormous potential for improving cancer treatment. Cancer immunotherapy based on nanoparticles is anticipated not only to overcome the limitations of existing immunotherapy, but also to generate synergistic effects via cooperation between nanoparticles and immune cells.