• Title/Summary/Keyword: Anti-swing crane control

Search Result 53, Processing Time 0.028 seconds

An anti-swing control for 2 axis overhead cranes (2축 천정 크레인의 무진동 제어)

  • 이호훈;조성근;정연우
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1428-1431
    • /
    • 1996
  • This paper proposes an anti-swing control law for a 2 degrees of freedom overhead crane. The dynamic model of a 2 degrees of freedom crane is highly nonlinear and coupled. The model is linearized and decoupled for each degree of freedom of the crane for small motions of the load about the vertical. Then a decoupled anti-swing control law is designed for each degree of freedom of the crane based on the linearized model. The control law consists of a position control loop and an swing angle control loop. The position loop,. is designed based on the loop shaping method and the swing angle loop is designed via the root locus method. Finally, the proposed anti-swing control law is implemented and evaluated on a 2 degrees of freedom prototype crane.

  • PDF

Position and load-swing control of a 2-dimensional overhead crane (2차원 천정크레인의 위치 및 이송물의 흔들림제어)

  • Lee, Ho-Hoon;Cho, Sung-Kun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.10
    • /
    • pp.1683-1693
    • /
    • 1997
  • In this paper, a new nonlinear dynamic model is derived for a 2-dimensional overhead crane based on a new definition of 2-degree-of-freedom swing angle, and a new anti-swing control law is proposed for the crane. The dynamic model and control law take simultaneous travel and traverse motions of the crane into consideration. The model is first linearized for small motions of the crane load about the vertical stable equilibrium. Then the model becomes decoupled and symmetric with respect to the travel and traverse axes of the crane. From this result, a decoupled anti-swing control law is proposed based on the linearized model via the loop shaping and root locus methods. This decoupled method guarantees not only fast damping of load-swing but also zero steady state position error with optimal transient response for the 2-dimensional motion of the crane. Finally, the proposed control method is evaluated by controlling the simultaneous travel and traverse motions of a 2-dimensional prototype overhead crane. The effectiveness of the proposed control method is then proven by the experimental results.

A study on the swing control using anti-swing orane (무진동 크레인을 이용한 흔들림 제어에 관한 연구)

  • 박병석;윤지섭;이재설
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.292-297
    • /
    • 1990
  • An anti-swing controller for an overhead crane in the stop position is designed. The developed anti-swing controller improves on the poor damping characteristics of overhead crane by feeding back the crane acceleration as a function of swing angular speed. The experimental results show that this crane using the proposed controller yields small stop position error and rapid damping response characteristics.

  • PDF

A Fuzzy-Logic Anti-Swing Control for Three-Dimensional Overhead Cranes (Fuzzy 로직에 의한 3차원 천정크레인의 무진동 제어)

  • Lee, Ho-Hun;Kim, Hyeon-Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.9
    • /
    • pp.1468-1474
    • /
    • 2001
  • In this paper, a new fuzzy-logic anti-swing control scheme is proposed for a three-dimensional overhead crane. The proposed control consists of a position servo control and a fuzzy-logic control. The position servo control is used to control the trolley position and rope length, and the fuzzy-logic control is used to suppress load swing. The proposed control guarantees not only prompt suppression of load swing but also accurate control of trolley position and rope length for the simultaneous travel, traverse, and hoisting motions of the crane. The effectiveness of the proposed control is shown by experiments with a prototype three-dimensional overhead crane.

Development of controller for anti-swing and position of crane (크레인의 Anti-Swing 및 위치 제어기의 개발)

  • 정승현;권판조;이달해
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.277-281
    • /
    • 1996
  • The roof crane system is used for transporting a variable load to a target position. At this time, the goal of crane system is transporting to a goal position as soon as possible with no rope oscillation. Generally crane is operated by expert's knowledge, but recently automatic control with high speed and rapid transportation is required. In this thesis we developed fuzzy controller of crane which has simplified expert's knowledge base for anti-swing and rapid tansportation to goal position.

  • PDF

Anti-Sway Control System Design for the Container Crane

  • An, Sang-Back;Kim, Young-Bok;Kang, Gi-Bong;Zhai, Guisheng
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1404-1409
    • /
    • 2003
  • The sway control problem of the pendulum motion of the container crane hanging on the trolley, which transports containers from the container ship to the truck, is considered in this paper. In the container crane control problem, the main issue is to suppress the residual swing motion of the container at the end of the acceleration, deceleration or the case of that the unexpected disturbance input exists. For this problem, in general, the trolley motion control strategy is introduced and applied to real plants. In this paper, we suggest a new type of swing motion control system for a crane system in which a small auxiliary mass is installed on the spreader. The actuator reacting against the auxiliary mass applies inertial control forces to the spreader of the container crane to reduce the swing motion in the desired manner. In this paper, we consider that the length of the rope varies is we design the anti-sway control system based on LMI(linear matrix inequality) approach. And, it will be shown that the proposed control strategy is useful and it can be easily applicable to the real world. So, in this study, we investigate usefulness of the proposed anti-sway system and evaluate system performance from simulation and experimental studies.

  • PDF

Anti-swing and position control of crane using fuzzy controller (퍼지제어기를 이용한 크레인의 진동억제 및 위치제어)

  • Jeong, Seung-Hyun;Park, Jung-Il
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.5
    • /
    • pp.435-442
    • /
    • 1997
  • The roof crane system is used for transporting a variable load to a target position. The goal of crane control system is transporting the load to a goal position as quick as possible without rope oscillation. The crane is generally operated by an expert operator, but recently an automatic control system with high speed and rapid tansportation is required. In this paper, we developed a simple fuzzy controller which has been introduced expert's knowledge base for anti-swing and rapid tranportation to goal position. In particular, we proposed the synthesis reasoning method which synthesizes on the basis of expert knowledge of the angle control input and position control input which are inferenced parallel and simultaneously. And we confirmed that the performance of the developed controller is effective as a result of applying it to crane simulator and also verified whether the proposed synthesis rules have been applied correctly using clustering algorithm from the measured data.

  • PDF

A Study on Swing Motion Control System Design for the Spreader of the Crane (크레인 스프레더의 Swing Motion 제어에 관한 연구)

  • Chae, G.H.;Kim, Y.B.
    • Journal of Power System Engineering
    • /
    • v.7 no.3
    • /
    • pp.54-60
    • /
    • 2003
  • In general, the swing motion of the crane is controlled and suppressed by activating the trolley motion. In this paper, we suggest a new type of anti-sway control system of the crane. In the proposed control system, a small auxiliary mass(moving-mass) is installed on the spreader and the swing motion is controlled by moving the auxiliary mass. The actuator reaction against the auxiliary mass applies inertial control forces to the container to reduce the swing motion in the desired manner. In this paper, we apply the $H_{\infty}$ based control technique to the anti-sway control system design problem. And the experimental result shows that the proposed control system is shown to be useful and robust to disturbances like winds and initial sway motion.

  • PDF

A Study on Swing Motion Control System Design for the Spreader of the Crane with Varying Rope Length (크레인 스프레더의 Swing Motion 제어에 관한 연구 : 로프 길이변화를 고려한 경우)

  • An, S.B.;Chae, G.H.;Kim, Y.B.
    • Journal of Power System Engineering
    • /
    • v.8 no.1
    • /
    • pp.55-61
    • /
    • 2004
  • In general, the swing motion of the crane is controlled and suppressed by activating the trolley motion. In this paper, we suggest a new type of anti-sway control system of the crane. In the proposed control system, a small auxiliary mass(moving-mass) is installed on the spreader and the swing motion is controlled by moving the auxiliary mass. The actuator reaction against the auxiliary mass applies inertial control forces to the container in order to reduce the swing motion in the desired manner. In this paper, we apply the $H_{\infty}$ based control technique to the anti-sway control system design problem. And the experimental result shows that the proposed control system is useful and robust to disturbances like winds and initial sway motion.

  • PDF

Swing Motion Analysis of the Container Crane Headblock (콘테이너 크레인의 헤드블록 횡동요 해석)

  • 조대승
    • Journal of KSNVE
    • /
    • v.7 no.5
    • /
    • pp.765-772
    • /
    • 1997
  • This paper presents the swing motion analysis of the container crane headblock with the passive control device using hydraulic motors and anti-swing ropes. The device hauls at the headblock to opposite direction of its swing motion using the tension difference between anti-swing ropes connected to the headblock. To consider this control mechanism, the headblock is modelled as the rigid bar suspended by two hoist ropes at the overhead trolley and its non-linear equation of motion is derived using Lagrange's equation. Some numerical experiments using the equation are carried out to investigate the swing motion characteristics of the headblock under the variation of geometric relation among the cargo handling components and to evaluate the performance of the anti-swing device.

  • PDF