• Title/Summary/Keyword: Anti-stress effect

Search Result 755, Processing Time 0.031 seconds

Two Dimensional Size Effect on the Compressive Strength of T300/924C Carbon/Epoxy Composite Plates Considering Influence of an Anti-buckling Device (T300/924C 탄소섬유/에폭시 복합재 적층판의 이차원 압축 강도의 크기효과 및 좌굴방지장치의 영향)

  • ;;;C. Soutis
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.88-91
    • /
    • 2002
  • The two dimensional size effect of specimen gauge section (length x width) was investigated on the compressive behavior of a T300/924 [45/-45/0/90]3s, carbon fiber-epoxy laminate. A modified ICSTM compression test fixture was used together with an anti-buckling device to test 3mm thick specimens with a 30$\times$30, 50$\times$50, 70$\times$70, and 90mm$\times$90mm gauge length by width section. In all cases failure was sudden and occurred mainly within the gauge length. Post failure examination suggests that $0^{\circ}$ fiber microbuckling is the critical damage mechanism that causes final failure. This is the matrix dominated failure mode and its triggering depends very much on initial fiber waviness. It is suggested that manufacturing process and quality may play a significant role in determining the compressive strength. When the anti-buckling device was used on specimens, it was showed that the compressive strength with the device was slightly greater than that without the device due to surface friction between the specimen and the device by pretoque in bolts of the device. In the analysis result on influence of the anti-buckling device using the finite element method, it was found that the compressive strength with the anti-buckling device by loaded bolts was about 7% higher than actual compressive strength. Additionally, compressive tests on specimen with an open hole were performed. The local stress concentration arising from the hole dominates the strength of the laminate rather than the stresses in the bulk of the material. It is observed that the remote failure stress decreases with increasing hole size and specimen width but is generally well above the value one might predict from the elastic stress concentration factor. This suggests that the material is not ideally brittle and some stress relief occurs around the hole. X-ray radiography reveals that damage in the form of fiber microbuckling and delamination initiates at the edge of the hole at approximately 80% of the failure load and extends stably under increasing load before becoming unstable at a critical length of 2-3mm (depends on specimen geometry). This damage growth and failure are analysed by a linear cohesive zone model. Using the independently measured laminate parameters of unnotched compressive strength and in-plane fracture toughness the model predicts successfully the notched strength as a function of hole size and width.

  • PDF

The effects of Korean Red Ginseng on stress-related neurotransmitters and gene expression: A randomized, double-blind, placebo-controlled trial

  • Jihyun Yoon;Byoungjin Park;Kyung-Won Hong;Dong-Hyuk Jung
    • Journal of Ginseng Research
    • /
    • v.47 no.6
    • /
    • pp.766-772
    • /
    • 2023
  • Background: Korean Red Ginseng (KRG) is an effective anti-stress treatment. In this study, we investigated the therapeutic potential effects of KRG on relieving stress in a general population using transcriptome analysis. Methods: We conducted an 8-week clinical pilot study on 90 healthy men who reported stress. The study was completed by 43 participants in the KRG group and 44 participants in the placebo group. Participants were randomized 1:1 to the KRG and placebo groups. We evaluated the stress by stress response inventory (SRI) at baseline and 8 weeks. The main outcomes were changes in the levels of neurotransmitters (NTs) and NT-related gene expression. NTs were analyzed using automated (GC) content, and levels of gene expression were measured by reads per kilobase of transcript per million mapped reads (RPKM). Results: The KRG group showed significantly preserved epinephrine decrease compared with placebo group at 8 weeks (changes in epinephrine, KRG vs. placebo; -1623.2 ± 46101.5 vs. -35116.3 ± 86288.2, p = 0012). Among subjects who higher SRI score, meaning stress increased compared to baseline, the KRG group showed a smaller decrease in serotonin than the placebo group (changes in serotonin, KRG vs. placebo; -2627.5 ± 5859.1 vs, -8087.4 ± 7162.4, p = 0.005) and a smaller increase in cortisol than the placebo group (changes in cortisol, KRG vs. placebo; 1912.7 ± 10097.75 vs. 8046.2 ± 8050.6 , p = 0.019) in subgroup analysis. Transcriptome findings indicated that KRG intake affects gene expression related with metabolism of choline, adrenalin, and monoamine. Conclusion: These findings suggest that KRG has beneficial effects on the amelioration of stress response in NTs, and this effect is more prominent in stressful situations. Further clinical studies are required to confirm the anti-stress effect of KRG.

Screening Methods for Anti-senescence Activity in Dermal Fibroblasts under Pyruvate-deprivation Conditions

  • Kil, In Sup;Shim, Jinsup;Cho, Gayoung;Choi, Sowoong;Son, Eui Dong;Kim, Hyoung-June
    • Korea Journal of Cosmetic Science
    • /
    • v.1 no.1
    • /
    • pp.1-9
    • /
    • 2019
  • The identification of compounds with anti-senescence activity in cell culture system is a first step in aging research. Given that pyruvate can be used energy source by conversion to acetyl-CoA in mitochondria, and protects cultured cell from various stress-induced cell damage and cell death, synthetic media (e.g., DMEM) often includes 1 mM pyruvate, which is very higher than the pyruvate concentration in human blood (approximately 30 ��M). However, the use of medium containing high concentration of pyruvate is not suitable for screening anti-senescence compounds, because pyruvate also protects against the cellular senescence of primary human dermal fibroblasts (NHDFs) through NAD+ generated during conversion to lactate. In this study, four extracts, i.e., Sprouted seed and fruit complex, Poncirus trifoliata fruit extract, Jaum balancing complex, and Prunus mume extract were used for evaluation of different anti-senescence effect in the absence or presence of 0.1 mM pyruvate, similar to the physiological pyruvate concentration. The senescence in NHDFs cultured with DMEM in the presence of 0.1 mM pyruvate (approximately the physiological concentration in human blood) is accelerated, as observed in pyruvate deprivation conditions. The cytotoxicity of the Poncirus trifoliata fruit extract was protected by pyruvate, and Jaum balancing complex and Prunus mume extract had anti-senescence activity in the presence of 0.1 mM pyruvate, but not in the absence of pyruvate. Given that pyruvate is a powerful protector against both cytotoxicity and cellular senescence, the screening of candidate agents for anti-senescence in high pyruvate conditions using an in vitro cell culture system is not valid. Therefore, we recommend the use of a low concentration of pyruvate to evaluate the anti-senescence effects of candidates, which is more similar to in vivo aging conditions than excessive stress-induced senescence models, to exclude the effect of excessive pyruvate in vitro.

The mechanism of human neural stem cell secretomes improves neuropathic pain and locomotor function in spinal cord injury rat models: through antioxidant, anti-inflammatory, anti-matrix degradation, and neurotrophic activities

  • I Nyoman Semita;Dwikora Novembri Utomo;Heri Suroto;I Ketut Sudiana;Parama Gandi
    • The Korean Journal of Pain
    • /
    • v.36 no.1
    • /
    • pp.72-83
    • /
    • 2023
  • Background: Globally, spinal cord injury (SCI) results in a big burden, including 90% suffering permanent disability, and 60%-69% experiencing neuropathic pain. The main causes are oxidative stress, inflammation, and degeneration. The efficacy of the stem cell secretome is promising, but the role of human neural stem cell (HNSC)-secretome in neuropathic pain is unclear. This study evaluated how the mechanism of HNSC-secretome improves neuropathic pain and locomotor function in SCI rat models through antioxidant, anti-inflammatory, anti-matrix degradation, and neurotrophic activities. Methods: A proper experimental study investigated 15 Rattus norvegicus divided into normal, control, and treatment groups (30 µL HNSC-secretome, intrathecal in the level of T10, three days post-traumatic SCI). Twenty-eight days post-injury, specimens were collected, and matrix metalloproteinase (MMP)-9, F2-Isoprostanes, tumor necrosis factor (TNF)-α, transforming growth factor (TGF)-β, and brain derived neurotrophic factor (BDNF) were analyzed. Locomotor recovery was evaluated via Basso, Beattie, and Bresnahan scores. Neuropathic pain was evaluated using the Rat Grimace Scale. Results: The HNSC-secretome could improve locomotor recovery and neuropathic pain, decrease F2-Isoprostane (antioxidant), decrease MMP-9 and TNF-α (anti-inflammatory), as well as modulate TGF-β and BDNF (neurotrophic factor). Moreover, HNSC-secretomes maintain the extracellular matrix of SCI by reducing the matrix degradation effect of MMP-9 and increasing the collagen formation effect of TGF-β as a resistor of glial scar formation. Conclusions: The present study demonstrated the mechanism of HNSC-secretome in improving neuropathic pain and locomotor function in SCI through antioxidant, anti-inflammatory, anti-matrix degradation, and neurotrophic activities.

The Study on the Effect of Electroacupuncture at Shinmaek($BL_{62}$) on Anti-Oxidation (흰쥐의 신맥(申脈)($BL_{62}$)에 시술한 저주파 전침자극의 항산화 효과에 대한 실험적 연구)

  • Jeon, Ju-Hyun;Kim, Young-Il;Lee, Hyun
    • Journal of Acupuncture Research
    • /
    • v.24 no.4
    • /
    • pp.1-12
    • /
    • 2007
  • Objectives : The purpose of this study is to investigate the anti-oxidative effect of electroacupuncture at Shinmaek($BL_{62}$) in rats. Methods : In order to cause oxidative stress, AAPH was administered to the abdominal cavity of rats, after we stimulated $BL_{62}$ of the rat by electroacupuncture. Blood test and anti-oxidative test(LDL-cholesterol, GOT, GPT SOD, GSH, catalase, NO, MDA) were performed at the end of treatment. Results: 1. SOD, glutathione, catalase activity were significantly increased in the $BL_{62}-EA$ group compared with the holder group. 2. NO density was significantly decreased in the $BL_{62}-EA$ group compared with the holder group. 3. Glutathione was significantly increased in the $BL_{62}-EA$ group compared with the sham-EA group. Conclusion : These results suggest that electroacupuncture at $BL_{62}$ has an anti-oxidant effect in human.

  • PDF

Protective Effect of Protocatechuic Acid, Phenolic Compound of Momordica Charantia, against Oxidative Stress and Neuroinflammation in C6 Glial Cell (여주의 페놀성 화합물인 Protocatechuic Acid의 산화적 스트레스 개선 및 신경염증 보호 효과)

  • Kim, Ji-Hyun;Choi, Jung Ran;Cho, Eun Ju;Kim, Hyun Young
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.20 no.1
    • /
    • pp.10-19
    • /
    • 2020
  • Objectives: Oxidative stress-mediated neuroinflammation has been supposed as a crucial factor that contributes to the pathogenesis of many neurodegenerative diseases. In this study, we aimed to investigate the protective activity against oxidative stress and neuroinflammation of protocatechuic acid (PA), active phenolic compound from Momordica Charantia. Methods: Protective activity of PA from oxidative stress was performed under in vitro conditions. Our study investigated the protective mechanism of PA from neuroinflammation in cellular system using C6 glial cell. To investigate the improvement the effects on oxidative stress and neuroinflammation, we induced oxidative stress by H2O2 (100 μM) stimulation and induced neuroinflammation by treatment with lipopolysaccharide (LPS) (1 ㎍/mL) and interferon-gamma (IFN-γ) (10 ng/mL) in C6 glial cells. Results: PA showed strong radical scavenging effect against 1,1-dipenyl-2-picrylhydrazyl, hydroxy radical (·OH) and nitric oxide (NO). Under oxidative stress treated by H2O2, the result showed the increased mRNA expressions of oxidative stress markers such as nuclear factor-kappaB (NF-κB), cyclooxygenase (COX-2) and inducible nitric oxide (iNOS). However, the treatment of PA led to reduced mRNA expressions of NF-κB, COX-2 and iNOS. Moreover, PA attenuated the production of interleukin-6 and scavenged NO generated by both endotoxin LPS and IFN-γ together. Furthermore, it also reduced LPS and IFN-γ-induced mRNA expressions of iNOS and COX-2. Conclusions: In conclusion, our results collectively suggest that PA, phenolic compound of Momordica Charantia, could be a safe anti-oxidant and a promising anti-neuroinflammatory molecule for neurodegenerative diseases.

Sonchus asper extract inhibits LPS-induced oxidative stress and pro-inflammatory cytokine production in RAW264.7 macrophages

  • Wang, Lan;Xu, Ming Lu;Liu, Jie;Wang, You;Hu, Jian He;Wang, Myeong-Hyeon
    • Nutrition Research and Practice
    • /
    • v.9 no.6
    • /
    • pp.579-585
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: Sonchus asper is used extensively as an herbal anti-inflammatory for treatment of bronchitis, asthma, wounds, burns, and cough; however, further investigation is needed in order to understand the underlying mechanism. To determine its mechanism of action, we examined the effects of an ethyl acetate fraction (EAF) of S. asper on nitric oxide (NO) production and prostaglandin-E2 levels in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. MATERIALS/METHODS: An in vitro culture of RAW264.7 macrophages was treated with LPS to induce inflammation. RESULTS: Treatment with EAF resulted in significant suppression of oxidative stress in RAW264.7 macrophages as demonstrated by increased endogenous superoxide dismutase (SOD) activity and intracellular glutathione levels, decreased generation of reactive oxygen species and lipid peroxidation, and restoration of the mitochondrial membrane potential. To confirm its anti-inflammatory effects, analysis of expression of inducible NO synthase, cyclooxygenase-2, tumor necrosis factor-${\alpha}$, and the anti-inflammatory cytokines IL-$1{\beta}$ and IL-6 was performed using semi-quantitative RT-PCR. EAF treatment resulted in significantly reduced dose-dependent expression of all of these factors, and enhanced expression of the antioxidants MnSOD and heme oxygenase-1. In addition, HPLC fingerprint results suggest that rutin, caffeic acid, and quercetin may be the active ingredients in EAF. CONCLUSIONS: Taken together, findings of this study imply that the anti-inflammatory effect of EAF on LPS-stimulated RAW264.7 cells is mediated by suppression of oxidative stress.

Anti-apoptotic Effects of Red Ginseng on Oxidative Stress Induced by Hydrogen Peroxide in SK-N-SH Cells

  • Kim, Eun-Hye;Lee, Mi-Jeong;Kim, In-Hye;Pyo, Suhk-Neung;Choi, Kwang-Tae;Rhee, Dong-Kwon
    • Journal of Ginseng Research
    • /
    • v.34 no.2
    • /
    • pp.138-144
    • /
    • 2010
  • Ginseng (Panax ginseng C.A. Meyer) has been shown to have anti-stress effects in animal studies. However, most studies have only managed to detect altered levels of biomarkers or enzymes in blood or tissue, and the actual molecular mechanisms by which ginseng exerts these effects remain unknown. In this study, the anti-oxidative effect of Korean red ginseng (KRG) was examined in human SK-N-SH neuroblastoma cells. Incubation of SK-N-SH cells with the oxidative stressor hydrogen peroxide resulted in significant induction of cell death. In contrast, pre-treatment of cells with KRG decreased cell death significantly. To elucidate underlying mechanisms by which KRG inhibited cell death, the expression of apoptosis-related proteins was examined by Western blot analysis. KRG pre-treatment decreased the expression of the pro-apoptotic gene caspase-3, whereas it increased expression of the anti-apoptotic gene Bcl-2. Consistent with this, immunoblot analysis showed that pre-treatment of the SK-N-SH cells with KRG inhibited expression of the pro-inflammatory gene cyclooxygenase 2 (COX-2). RT-PCR analysis revealed that the repression of COX-2 expression by KRG pre-treatment occurred at the mRNA level. Taken together, our data indicate that KRG can protect against oxidative stress-induced neuronal cell death by repressing genes that mediate apoptosis and inflammation.

Anti-fatigue activity of a mixture of seahorse (Hippocampus abdominalis) hydrolysate and red ginseng

  • Kang, Nalae;Kim, Seo-Young;Rho, Sum;Ko, Ju-Young;Jeon, You-Jin
    • Fisheries and Aquatic Sciences
    • /
    • v.20 no.3
    • /
    • pp.3.1-3.8
    • /
    • 2017
  • Seahorse, a syngnathidae fish, is one of the important organisms used in Chinese traditional medicine. Hippocampus abdominalis, a seahorse species successfully cultured in Korea, was validated for use in food by the Ministry of Food and Drug Safety in February 2016; however. the validation was restricted to 50% of the entire composition. Therefore, to use H. abdominalis as a food ingredient, H. abdominalis has to be prepared as a mixture by adding other materials. In this study, the effect of H. abdominalis on muscles was investigated to scientifically verify its potential bioactivity. In addition, the anti-fatigue activity of a mixture comprising H. abdominalis and red ginseng (RG) was evaluated to commercially utilize H. abdominalis in food industry. H. abdominalis was hydrolyzed using Alcalase, a protease, and the effect of H. abdominalis hydrolysate (HH) on the muscles was assessed in C2C12 myoblasts by measuring cell proliferation and glycogen content. In addition, the mixtures comprising HH and RG were prepared at different percentages of RG to HH (20, 30, 40, 50, 60, 70, and 80% RG), and the anti-fatigue activity of these mixtures against oxidative stress was assessed in C2C12 myoblasts. In C2C12 myoblasts, $H_2O_2$-induced oxidative stress caused a decrease in viability and physical fatigue-related biomarkers such as glycogen and ATP contents. However, treatment with RG and HH mixtures increased cell viability and the content of fatigue-related biomarkers. In particular, the 80% RG mixture showed an optimum effect on cell viability and ATP synthesis activity. In this study, all results indicated that HH had anti-fatigue activity at concentrations approved for use in food by the law in Korea. Especially, an 80% RG to HH mixture can be used in food for ameliorating fatigue.

Anti-oxidative effect of electroacupuncture to Yinlingquan (SP9) in AAPH induced oxidative stress of rats (백서의 음릉천에 시술한 저주파 침자극의 항산화 효과에 대한 실험적 연구)

  • Lee, Jung-Tae;Kim, Young-Il;Yim, Yun-Kyoung
    • Korean Journal of Acupuncture
    • /
    • v.25 no.1
    • /
    • pp.139-154
    • /
    • 2008
  • Objectives & Methods : The purpose of this study is to observe the anti-oxidative effects of electroacupuncture to Yinlingquan(SP9) in AAPH induced oxidative stress of rats. The author performed several experimental items including measurements of body weight, levels of albumin, total bilirubin, LDL-cholesterol, GOT and GPT in serum, levels of SOD, glutathione, catalase, NO and MDA in liver, histological analysis of liver. The conclusions are as follows. Results : 1. In the SP9-EA group, the level of LDL-cholesterol was significantly decreased in comparison with that of the holder group and control group. 2. In the SP9-EA group, SOD activity, glutathione concentration in liver were increased, and NO concentration was decreased significantly in comparison with those of the control group and the holder group. 3. In the SP9-EA group, the density of liver tissue was maintained more similarly to the normal group in comparison with those of the control group and the holder group. 5. The results of the SP9-NR group showed similar tendencies with those of the SP9-EA group, but the effects were lower than those of the SP9-EA group. Conclusion : These results suggest that electroacupuncture at SP9 has an anti oxidative effect through suppressing both the reduction of anti-oxidative enzymes and production of oxidized substances.

  • PDF