• Title/Summary/Keyword: Anti-proliferative

Search Result 484, Processing Time 0.017 seconds

Anticarcinogenic Effects of Extracts from Gloiopeltis tenax (참가사리 분획물의 암 예방효과)

  • Jung, Young-Hwa;Jung, Bok-Mi;Shin, Mi-Ok;Bae, Song-Ja
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.4
    • /
    • pp.395-401
    • /
    • 2006
  • In this study, we investigated anticarcinogenic effects of extracts from Gloiopeltis tenax (GT). GT was extracted with methanol (GTM), which was then further fractionated into four fractions by using solvent fractionation method, affording methanol (GTMM), hexane (GTMH), butanol (GTMB) and aqueous (GTMA) soluble fractions. We determined the cytotoxic effects of these fractions on cancer cells by MTT assay. Among various fractions of GT, the GTMM showed the strongest cytotoxic effect at concentration of $150{\mu}g/mL$, displaying 95.97% on HepG2 cell lines and 93.64% on HT-29 cell lines, respectively. And, the anti-proliferative effect of GT was accompanied by a marked in increase of levels of Bad, Bax, Bok and Bak protein and activation of caspase-3, caspase-7 and PARP protein. Also, we observed quinone reductase (QR) induced effects in all fraction layers of GT on HepG2 cells. The QR induced effects of the GTMM and GTMB on HepG2 cells at concentration of $60{\mu}g/mL$ showing inductive indexes of 2.86 and 2.04 compared to the control value of 1.0.

$HgCl_2$ Dysregulates the Immune Response of Balb/c Mice (수은에 의한 마우스의 면역반응 조절장애)

  • Ki, No-Suk;Koh, Dai-Ha;Kim, Chong-Suh;Lee, Jung-Sang;Kim, Nam-Song;Lee, Hwang-Ho
    • Journal of Preventive Medicine and Public Health
    • /
    • v.27 no.1 s.45
    • /
    • pp.11-24
    • /
    • 1994
  • The studies reported here were undertaken to investigate the effects of mercury chloride on immune system of Balb/c mouse employing a flexible tier of in vitro and in vivo assays. Mercury chloride inhibited the proliferative responses of spleen cells to lipopolysaccharide, pokeweed mitogen, and phytohemagglutinin as a dose-dependent manner. This inhibitory effect was observed not only when $HgCl_2$ was added 2nd or 3rd day of 3 days culture period but also when spleen cells was pretreated with $HgCl_2$ for 2 hours. Mercury chloride, however, potentiated the production of IgM and IgG from spleen cells. During the $HgCl_2$ administration by drinking for 3 weeks, the weight gain of mice was significantly blunted than that o control group mice, while no overt signs related to mercury toxicity were noted in any mice of experimental group. There was no change in thymus and spleen weights, and in histological findings of kidney, bone marrow of femur, thymus, spleen, and popliteal lymph node after 3 weeks of mercury exposure. However, $HgCl_2$ induced a significant increase of total serum IgM, IgG including $IgG_1,\;IgG_{2a}\;and\;IgG_{2b}$, and IgE in Balb/c mice. Treatment in vivo with anti-IL-4 monoclonal antibody significantly abrogated the $HgCl_2$-induced increase in total serum IgG1 and IgE. Whereas $HgCl_2$ potentiated total serum IgM and IgG, there was no difference in total serum hemagglutinin to SRBC (Sheep Red Blood Cell) between experimental and control group mice when these mice were immunized with SRBC. All these findings observed in Balb/c mice suggest that mercury perturbates well-orchestrated regulation of immune responses before developing histopathological changes in lymphoid tissues.

  • PDF

4-Hydroxynonenal Induces Endothelial Cell Apoptosis via ROS and Peroxynitrite Generation (4-Hydroxynonenal에 생성된 ROS와 peroxynitrite를 통한 내피세포의 세포사에 관한 연구)

  • Chung, Sang-Woon;Yee, Su-Bog;Lee, Ji-Young;Hossain, Mohammad Akbar;Kim, Dong-Hwan;Yoon, Jeong-Hyun;Chung, Hae-Young;Kim, Nam-Deuk;Kim, Nam-Deuk
    • Journal of Life Science
    • /
    • v.21 no.7
    • /
    • pp.961-968
    • /
    • 2011
  • The formation of reactive lipid aldehydes, 4-hydroxynonenal (HNE) is shown to be derived from fatty acid hydroperoxides through the oxidative process. Among its known effects in cytotoxicity, HNE has been implicated in apoptotic cell death. To delineate its putative role as a potential mediator, we investigated the mechanism by which HNE induces apoptosis of endothelial cells (ECs). The anti-proliferative effects of HNE were tested through MTT assay after exposure to various concentrations ($5\sim15\;{\mu}M$) of HNE. We observed apoptotic bodies with propidium iodide staining, and measured the HNE induction of endothelial apoptosis by flow cytometry assay. We observed that cells exposed to HNE for 24 hr resulted in increased poly(ADP-ribose) polymerase cleavage and up-regulation of Bax. Data on the HNE action strongly indicated the involvement of reactive species, namely, intracellular ROS, nitrite, and peroxynitrite. To obtain evidence on the implication of ROS and peroxynitrite in HNE-induced apoptosis, a ROS scavenger, N-acetylcysteine (NAC), and a peroxynitrite scavenger, penicillamine, were tested. Results clearly indicate that the induction of apoptosis by HNE was effectively inhibited by NAC and penicillamine. Based on the present data, we conclude that the endothelial apoptosis induced by HNE involves both ROS generation and peroxynitrite activity. Our new data could lead to a redefinition of HNE action on apoptosis in ECs.

Study of Rat Mammary Epithelial Stem Cells In Vivo and In Vitro (생체 및 시험관에서 유선 상피 모세포의 분리와 동정)

  • Nam Deuk Kim;Kee-Joo Paik
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.3
    • /
    • pp.470-486
    • /
    • 1995
  • Mammary epithelial cells contain a subpopulation of cells with a large proliferativ potential which are responsible for the maintenance of glandular cellularity and are the progenitor cells of mammary cancer. These clonogens give rise to multicellular clonal alveolar or ductal units(AU or DU) on transplantation and hormonal stimulation. To isolate putative mammary clonogens, enzymatically monodispersed rat mammary epithelial cells from organoid cultures and from intact glands are sorted by flow cytometry according to their affinity for FITC labeled peanut lectin(PNA) and PE labeled anti-Thy-1.1 antibody(Thy-1.1) into four subpopulations : cells negative to both PNA and Thy-1.1(B-), PNA+cells, Thy-1.1+cells, and cells positive to both reagents(B+). The in vivo transplantation assays indicate that the clonogenic fractions of PNA+cells from out-growths of organoids in primary cultures for three days in complete hormone medium(CHM) are significantly higher than those of cells from other subpopulations derived from cultrues or from intact glands. Extracellular matrix(ECM) is a complex of several proteins that regulated cell function ; its role in cell growth and differentiation and tissue-specific gene expression. It can act as a positive as well as a negative regulator of cellular differentiation depending on the cell type and the genes studied. Regulation by ECM is closely interrelated with the action of other regulators of cellular function, such as growth factors and hormones. Matrigel supports the growth and development of several different multicellular colonies from mammary organoids and from monodispersed epithelial cells in culture. Several types of colonies are observed including stellate colonies, duct-like structures, two- and three-dimensional web structures, squamous organoids, and lobulo-duct colonies. Organoids have the greatest proliferative potential and formation of multi-cellular structures. Phase contrast micrographs demonstrate extensive intracellular lipid accumulation within the web structures and some of duct-like colonies. At the immunocytochemical and electron micrograph level, casein proteins are predominantly localized near the apical surface of the cells or in the lumen of duct-like or lobulo-duct colonies. Squamous colonies are comprised of several layers of squamous epithelium surrounding keratin pearls as is typical fo squamous metaplasia(SM). All-trans retinoic acid(RA) inhibits the growth of SM. The frequency of lobulo-ductal colony formation increased with the augmentation of RA concentration in these culture conditions. The current study models could provide powerful tools not only for understanding cell growth and differentiation of epithelial cells, but also for the isolation and characterization of mammary clonogenic stem cells.

  • PDF