• Title/Summary/Keyword: Anti-proliferation

Search Result 1,525, Processing Time 0.027 seconds

Salvianolic Acid B Inhibits Hand-Foot-Mouth Disease Enterovirus 71 Replication through Enhancement of AKT Signaling Pathway

  • Kim, So-Hee;Lee, Jihye;Jung, Ye Lin;Hong, Areum;Nam, Sang-Jip;Lim, Byung-Kwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.1
    • /
    • pp.38-43
    • /
    • 2020
  • Hand, foot, and mouth disease (HFMD) is caused by enterovirus 71 (EV71) in infants and children under six years of age. HFMD is characterized by fever, mouth ulcers, and vesicular rashes on the palms and feet. EV71 also causes severe neurological manifestations, such as brainstem encephalitis and aseptic meningitis. Recently, frequent outbreaks of EV71 have occurred in the Asia-Pacific region, but currently, no effective antiviral drugs have been developed to treat the disease. In this study, we investigated the antiviral effect of salvianolic acid B (SalB) on EV71. SalB is a major component of the Salvia miltiorrhiza root and has been shown to be an effective treatment for subarachnoid hemorrhages and myocardial infarctions. HeLa cells were cultured in 12-well plates and treated with SalB (100 or 10 ㎍/ml) and 106 PFU/ml of EV71. SalB treatment (100 ㎍/ml) significantly decreased the cleavage of the eukaryotic eIF4G1 protein and reduced the expression of the EV71 capsid protein VP1. In addition, SalB treatment showed a dramatic decrease in viral infection, measured by immunofluorescence staining. The Akt signaling pathway, a key component of cell survival and proliferation, was significantly increased in EV71-infected HeLa cells treated with 100 ㎍/ml SalB. RT-PCR results showed that the mRNA for anti-apoptotic protein Bcl-2 and the cell cycle regulator Cyclin-D1 were significantly increased by SalB treatment. These results indicate that SalB activates Akt/PKB signaling and inhibits apoptosis in infected HeLa cells. Taken together, these results suggest that SalB could be used to develop a new therapeutic drug for EV71-induced HFMD.

Curcumin Induces Downregulation of E2F4 Expression and Apoptotic Cell Death in H CT116 Human Colon Cancer Cells; Involvement of Reactive Oxygen Species

  • Kim, Kyung-Chan;Lee, Chu-Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.6
    • /
    • pp.391-397
    • /
    • 2010
  • E2F transcription factors and their target genes have been known to play an important role in cell growth control. We found that curcumin, a polyphenolic phytochemical isolated from the plant Curcuma longa, markedly suppressed E2F4 expression in HCT116 colon cancer cells. Hydrogen peroxide was also found to decrease E2F4 protein level, indicating the involvement of reactive oxygen species (ROS) in curucmin-induced downregulation of E2F4 expression. Involvement of ROS in E2F4 downregulation in response to curcumin was confirmed by the result that pretreatment of cells with N-acetylcystein (NAC) before exposure of curcumin almost completely blocked the reduction of E2F4 expression at the protein as well as mRNA level. Anti-proliferative effect of curcumin was also suppressed by NAC which is consistent to previous reports showing curcumin-superoxide production and induction of poly (ADP-ribose) polymerase (PARP) cleavage as well as apoptosis. Expression of several genes, cyclin A, p21, and p27, which has been shown to be regulated in E2F4-dependent manner and involved in the cell cycle progression was also affected by curcumin. Moreover, decreased (cyclin A) and increased (p21 and p27) expression of these E2F4 downstream genes by curcumin was restored by pretreatment of cells with NAC and E2F4 overexpression which is induced by doxycycline. In addition, E2F4 overexpression was observed to partially ameliorate curcumin-induced growth inhibition by cell viability assay. Taken together, we found curcumin-induced ROS down-regulation of E2F4 expression and modulation of E2F4 target genes which finally lead to the apoptotic cell death in HCT116 colon cancer cells, suggesting that E2F4 appears to be a novel determinant of curcumin-induced cytotoxicity.

Study of the Mechanism for the Growth Inhibitory Effects of Conjugated Linoleic Acid on Caco-2 Colon Cancer Cells (Conjugated Linoleic Acid에 의한 대장암 세포 증식 억제 기전 연구)

  • 김은지;오윤신;이현숙;박현서;윤정한
    • Journal of Nutrition and Health
    • /
    • v.36 no.3
    • /
    • pp.270-279
    • /
    • 2003
  • Conjugated linoleic acid (CLA) is a group of positional and geometric isomers of linoleic acid (LA) and exhibits anticarcinogenic activity in a variety of animal models. We have previously observed that CLA inhibited the growth of Caco-2 cells, a human colon adenocarcinoma cell line. The present study was performed to determine whether the growth inhibitory effect of CLA is related to change in secretion of IGF- II and/or IGF-binding proteins (IGFBPs) that have been shown to regulate Caco-2 cell proliferation by an autocrine mechanism. Cells were incubated in serum-free medium with various concentrations of CLA or linoleic acid (LA). Immunoblot analysis of 24-hours, serum-free, conditioned medium using a monoclonal anti-IGF-IIantibody revealed that Caco-2 cells secreted both mature 6,500 Mr and higher Mr forms of pro IGF-II. The levels of pro IGF-II and mature IGF-IIwere decreased by 43 $\pm$ 2% and 53 $\pm$ 6%, respectively by treatment with 50 $\mu$ M CLA. LA slightly increased pro IGF- II levels. Results from Northern blot analysis showed that CLA decreased IGF-II mRNA levels at 50 $\mu$ M concentration suggesting that CLA regulation of IGF-II protein expression occurs partly at the transcriptional level. Ligand blot analysis of conditioned media using 1251-IGF-II revealed that CLA slightly decreased IGFBP-2 levels and increased IGFBP-4 levels. We confirmed our previous results that CLA inhibited cell growth in a dose-dependent manner but LA slightly increased cell growth. Exogenous IGF-II mitigated the growth inhibitory effect of CLA. These results indicate that the growth inhibitory effect of CLA may be at least in part mediated by decreasing IGF-II and IGFBP-2 secretion and increasing IGFBP-4 secretion in Caco-2 cells.

Dendrosomal Curcumin Inhibits Metastatic Potential of Human SW480 Colon Cancer Cells through Down-regulation of Claudin1, Zeb1 and Hef1-1 Gene Expression

  • Esmatabadi, Mohammad Javad Dehghan;Farhangi, Baharak;Safari, Zahra;Kazerooni, Hanif;Shirzad, Hadi;Zolghadr, Fatemeh;Sadeghizadeh, Majid
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.6
    • /
    • pp.2473-2481
    • /
    • 2015
  • Colon cancer is one of the leading causes of cancer-associated death worldwide. The prognosis for advanced colorectal cancers remains dismal, mainly due to the propensity for metastatic progression. Accordingly, there is a need for effective anti-metastasis therapeutic agents. Since a great body of research has indicated anticancer effects for curcumin, we investigated the effects of dendrosomal curcumin (DNC) on cellular migration and adhesion of human SW480 cells and possible molecular mechanisms involved. Different methods were applied in this study including MTT, Scratch and adhesion assays as well as real-time PCR and transwell chamber assays. Based on the results obtained, DNC inhibits metastasis by decreasing Hef 1, Zeb 1 and Claudin 1 mRNA levels and can reduce SW480 cell proliferation with $IC_{50}$values of 15.9, 11.6 and $7.64{\mu}M$ at 24, 48 and 72h post-treatment. Thus it might be considered as a safe formulation for therapeutic purpose in colorectal cancer cases.

Expression and Prognostic Role of MEKK3 and pERK in Patients with Renal Clear Cell Carcinoma

  • Chen, Qi;Lu, Hong-sheng;Gan, Mei-fu;Chen, Lan-xi;He, Kai;Fan, Guang-min;Cao, Xue-quan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.6
    • /
    • pp.2495-2499
    • /
    • 2015
  • Mitogen-activated protein kinase/extracellular signal-regulated kinase kinase kinase 3 (MEKK3) is an important serine/threonine protein kinase and a member of the MAPK family. MEKK3 can effectively activate the MEK/ERK signaling pathway and promote an autocrine growth loop critical for tumor genesis, cell proliferation, terminal differentiation, apoptosis and survival. To explore the relationship between MEKK3 and cell apoptosis, clinicopathology and prognosis, we characterize the expression of MEKK3, pERK and FoxP3 in the renal clear cell carcinoma (RCCC). Protein expression was detected by tissue microarray and immunochemistry in 46 cases of RCCC and 28 control cases. Expression levels of CD3+,CD3+CD4+,CD3+CD8+,CD4+CD25+, CD4+CD25+ FoxP3+ were assessed by flow cytometry and analyzed for their association with pathological factors, correlation and prognosis in RCCC. Expression of MEKK3, pERK and FoxP3 was significantly up-regulated in RCCC as compared to control levels (p<0.01), associated with pathological grade (p<0.05)and clinical stage (p<0.05). CD4+CD25+ Foxp3+ Treg cells were also significantly increased in RCCC patients (p<0.05). Cox multivariate regression analysis showed that MEKK3, pERK expression and patholigical stage were independent prognostic factors in patients with RCCC (p<0.05). MEKK3 can be used as an important marker of early diagnosis and prognostic evaluation in RCCC. It may be associated with imbalance of anti-tumor immunity and overexpression of pERK. Expression of MEKK3 and pERK are significantly increased in RCCC, with protein expression and clinical stage acting as independent prognostic factors.

Cytotoxic Effects of Phytophenolics from Caesalpinia mimosoides Lamk on Cervical Carcinoma Cell Lines through an Apoptotic Pathway

  • Palasap, Adisak;Limpaiboon, Temduang;Boonsiri, Patcharee;Thapphasaraphong, Suthasinee;Daduang, Sakda;Suwannalert, Prasit;Daduang, Jureerut
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.1
    • /
    • pp.449-454
    • /
    • 2014
  • Background: Extracts of Caesalpinia mimosoides Lamk has been reported to possess anticancer effects, but the active ingredients and the anti-cancer mechanisms are still unknown. Materials and Methods: The effects of a C mimosoides Lamk extract on cell proliferation and apoptosis induction in human cervical carcinoma cell lines, namely HeLa, SiHa, and C33A, as well as in normal Vero cells, were investigated. Results: Treatment with 5 active fractions (F17-F21) of C mimosoides Lamk methanol extracts inhibited cell viability in a dose- and time-dependent manner. Neutral red assays indicated that treatment with F21 significantly decreased the viability of all cervical cancer cell lines compared to F21-treated normal cells. In addition, HPLC analysis revealed that F21 contained multiple phenolic compounds, namely gallic acid, caffeine, vanillic acid, ferulic acid and resveratrol. F21 had the lowest IC50 and, therefore, a much higher cytotoxicity than F20, F17, F19, and F18 by 20-, 25-, 46- and 47- fold, respectively. Analysis of activation of the apoptosis pathway using a caspase 3/7 activity assay revealed that F21 treatment resulted in a considerable increase in caspase activation in all cancer cell lines tested. At the same concentration of F21, HeLa cells had the highest caspase activity (6.5-fold) compared to the control. Conclusion: C mimosoides Lamk may be of value as an alternative therapeutic agent, especially in combination with other compounds offering possible of synergy of action. Moreover, HPV- and non-HPV-related cervical cancer cells may differ in their responses to treatment regimens.

Barbigerone Inhibits Tumor Angiogenesis, Growth and Metastasis in Melanoma

  • Yang, Jian-Hong;Hu, Jia;Wan, Li;Chen, Li-Juan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.1
    • /
    • pp.167-174
    • /
    • 2014
  • Tumor angiogenesis, growth and metastasis are three closely related processes. We therefore investigated the effects of barbigerone on all three in the B16F10 tumor model established in both zebrafish and mouse models, and explored underlying molecular mechanisms. In vitro, barbigerone inhibited B16F10 cell proliferation, survival, migration and invasion and suppressed human umbilical vascular endothelial cell migration, invasion and tube formation in concentration-dependent manners. In the transgenic zebrafish model, treatment with $10{\mu}M$ barbigerone remarkably inhibited angiogenesis and tumor-associated angiogenesis by reducing blood vessel development more than 90%. In vivo, barbigerone significantly suppressed angiogenesis as measured by H and E staining of matrigel plugs and CD31 staining of B16F10 melanoma tumors in C57BL/6 mice. Furthermore, it exhibited highly potent activity at inhibiting tumor growth and metastasis to the lung of B16F10 melanoma cells injected into C57BL/6 mice. Western blotting revealed that barbigerone inhibited phosphorylation of AKT, FAK and MAPK family members, including ERK, JNK, and p38 MAPKs, in B16F10 cells mainly through the MEK3/6/p38 MAPK signaling pathway. These findings suggested for the first time that barbigerone could inhibit tumor-angiogenesis, tumor growth and lung metastasis via downregulation of the MEK3/6/p38 MAPK signaling pathway. The findings support further investigation of barbigerone as a potential anti-cancer drug.

Ginsenoside Rg1 Induces Apoptosis through Inhibition of the EpoR-Mediated JAK2/STAT5 Signalling Pathway in the TF-1/Epo Human Leukemia Cell Line

  • Li, Jing;Wei, Qiang;Zuo, Guo-Wei;Xia, Jing;You, Zhi-Mei;Li, Chun-Li;Chen, Di-Long
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.6
    • /
    • pp.2453-2459
    • /
    • 2014
  • Ginsenoside Rg1 is one effective anticancer and antioxidant constituent of total saponins of Panax ginseng (TSPG), which has been shown to have various pharmacological effects. Our previous study demonstrated that Rg1 had anti-tumor activity in K562 leukemia cells. The aim of this study was designed to investigate whether Rg1 could induce apoptosis in TF-1/Epo cells and further to explore the underlying molecular mechanisms. Here we found that Rg1 could inhibit TF-1/Epo cell proliferation and induce cell apoptosis in vitro in a concentration and time dependent manner. It also suppressed the expression of EpoR on the surface membrane and inhibited JAK2/STAT5 pathway activity. Rg1 induced up-regulation of Bax, cleaved caspase-3 and C-PAPR protein and down-regulation of Bcl-2 and AG490, a JAK2 specific inhibitor, could enhance the effects of Rg1. Our studies showed that EpoR-mediated JAK2/STAT5 signaling played a key role in Rg1-induced apoptosis in TF-1/Epo cells. These results may provide new insights of Rg1 protective roles in the prevention a nd treatment of leukemia.

Inhibitory Effect of Ginseng on Breast Cancer Cell Line Growth Via Up-Regulation of Cyclin Dependent Kinase Inhibitor, p21 and p53

  • Shabanah, Othman A AL;Alotaibi, Moureq R;Rejaie, Salim S Al;Alhoshani, Ali R;Almutairi, Mashal M;Alshammari, Musaad A;Hafez, Mohamed M
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.11
    • /
    • pp.4965-4971
    • /
    • 2016
  • Objective: Breast cancer is global female health problem worldwide. Most of the currently used agents for breast cancer treatment have toxic side-effects. Ginseng root, an oriental medicine, has many health benefits and may exhibit direct anti-cancer properties. This study was performed to assess the effects of ginseng on breast cancer cell lines. Materials and Methods: Cytotoxicity of ginseng extract was measured by MTT assay after exposure of MDA-MB-231, MCF-10A and MCF-7 breast cancer cells to concentrations of 0.25, 0.5, 1, 1.5, 2 and 2.5 mg/well. Expression levels of p21WAF, p16INK4A, Bcl-2, Bax and P53 genes were analyzed by quantitative real time PCR. Results: The treatment resulted in inhibition of cell proliferation in a dose-and time-dependent manner. p53, p21WAF1and p16INK4A expression levels were up-regulated in ginseng treated MDA-MB-231 and MCF-7 cancer cells compared to untreated controls and in MCF-10A cells. The expression levels of Bcl2 in the MDA-MB-231 and MCF-7 cells were down-regulated. In contrast, that of Bax was significantly up-regulated. Conclusion: The results of this study revealed that ginseng may inhibit breast cancer cell growth by activation of the apoptotic pathway.

HY253, a Novel Decahydrofluorene Analog, Induces Apoptosis via Intrinsic Pathway and Cell Cycle Arrest in Liver Cancer HepG2 Cells

  • Choi, Ko-woon;Suh, Hyewon;Jang, Seunghun;Kim, Dongsik;Lee, Chul-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.3
    • /
    • pp.413-417
    • /
    • 2015
  • Recently, we isolated HY253, a novel decahydrofluorene analog with a molecular structure of 7,8a-divinyl-2,4a,4b,5,6,7,8,8a,9,9a-decahydro-1H-fluorene-2,4a,4b,9a-tetraol from the roots of Aralia continentalis, which is known as Dokwhal (獨活), a traditional medicinal herb. Moreover, we previously reported its cytotoxic activity on cancer cell proliferation in human lung cancer A549 and cervical cancer HeLa cells. The current study aimed to evaluate its detailed molecular mechanisms in cell cycle arrest and apoptotic induction in human hepatocellular carcinoma HepG2 cells. Flow cytometric analysis of HepG2 cells treated with $60{\mu}M$ HY253 revealed appreciable cell cycle arrest at the G1 phase via inhibition of Rb phosphorylation and down-regulation of cyclin D1. Furthermore, using western blots, we found that up-regulation of cyclin-dependent kinase inhibitors, such as p21CIP1 and p27KIP1, was associated with this G1 phase arrest. Moreover, TUNEL assay and immunoblottings revealed apoptotic induction in HepG2 cells treated with $60{\mu}M$ HY253 for 24 h, which is associated with cytochrome c release from mitochondria, via down-regulation of anti-apoptotic Bcl-2 protein, which in turn resulted in activation of caspase-9 and -3, and proteolytic cleavage of poly(ADP-ribose) polymerase (PARP). Accordingly, we suggest that HY253 may be a potent chemotherapeutic hit compound for treating human liver cancer cells via up-regulation and activation of the p53 gene.