• 제목/요약/키워드: Anti-pollution coating

검색결과 10건 처리시간 0.02초

태양광 모듈용 내오염성 필름의 열처리 온도에 따른 특성 분석 (Characterization of Anti-pollution Film according to the Annealing Temperature for PV Module)

  • 유승철;최원석;임윤식;김정현
    • 전기학회논문지P
    • /
    • 제67권1호
    • /
    • pp.33-36
    • /
    • 2018
  • The purpose of this study is to improve the efficiency of anti-pollution film for PV module. The anti-pollution coating process was performed on a glass substrate, which is the same material as the glass substrate for the PV module. We coated the anti-pollution film on the glass substrate by spray coating. After coating process, annealing process was performed during 1 hour at $200^{\circ}C$, $300^{\circ}C$, and $400^{\circ}C$. And then we analyzed the surface characteristics according to the annealing temperature of the film. Annealing process can also improve the durability of the coated film. And then we analyzed the anti-pollution characteristics, particle size of anti-pollution film, light transmittance. The particle size of anti-pollution film was analyzed with FE-SEM. The light transmittance was analyzed with UV-Visible spectroscopy including integrating sphere.

PV 모듈 커버글라스 오염방지 코팅의 열처리 특성분석 (Characteristics of Annealing Properties of Anti-pollution Coatings for the Cover Glass of PV Module)

  • 정세진;임윤식;김정현;최원석
    • 전기학회논문지P
    • /
    • 제66권4호
    • /
    • pp.263-266
    • /
    • 2017
  • In this study, the characteristics of anti-pollution coatings on glass substrates through annealing treatment were investigated. To investigate the change of properties by coating method and number of annealing treatment, after the anti-pollution coating was performed on the surface of glass substrate in three ways, the annealing treatment was performed by setting three kinds of annealing treatment conditions. The annealing treatment method is a torch using gas, which is advantage in that it can be installed directly on the site in an easy way compared with a annealing treatment process which is generally difficult. The anti-pollution properties, contact angle, transmittance, hardness, and adhesion of films on glass substrate were measured under 9 conditions of combination of coating methods and annealing treatment conditions. It was confirmed that as the number of annealing treatment increases, the anti-pollution property of the film synthesized on glass substrate becomes better.

세라믹 기판위에 코팅된 기능성 필름의 열처리 분위기에 따른 내오염 및 기계적 특성 (Effects of Annealing Ambient on the Anti-Pollution and Mechanical Properties of Functional Film Coated on the Ceramic Substrate)

  • 선박문;강현일;최원석;정연호
    • 한국전기전자재료학회논문지
    • /
    • 제29권4호
    • /
    • pp.215-217
    • /
    • 2016
  • For the improvement of the anti-pollution properties of porcelain electrical insulators, in this study, we have applied the functional film to the surface of insulator. The functional films were coated on the ceramic substrates which components were like the porcelain electrical insulator. The coating material was applied to ceramic substrate by spray coating method and then the film was cured at around $300^{\circ}C$ for 10 minutes with different gas ambient, such as $O_2$, $N_2$, and only vacuum. We have measured the contact angle of the coated surface, and obtained the lowest angle ($8.9^{\circ}$) and a strong hydrophilic property at vacuum condition. The anti-pollution properties were measured, revealing that as the contact angle decreased, the anti-pollution properties improved. The mechanical hardness and adhesion were both excellent regardless of the annealing ambient.

기능성 필름의 열처리 온도에 따른 특성 분석 (Characteristic Analysis of Functional Films according to the Annealing Temperature)

  • 선박문;강현일;최원석;이경복;마상견
    • 전기학회논문지P
    • /
    • 제65권1호
    • /
    • pp.53-56
    • /
    • 2016
  • Because of the low pollution resistance of the porcelain electrical insulator itself, in this work the anti-pollution performance of insulator was improved by using the functional coating. The ceramic substrates that components were same as the porcelain electrical insulator were used in this experiment. The functional films were coated on the ceramic substrate by using a spray coating method, and then the coated substrate were annealed under different coating condition such as natural curing and annealing temperature of $200^{\circ}C$, $300^{\circ}C$ and $400^{\circ}C$. Then, the contact angles of the coated surfaces were measured and the minimum angle ($8.3^{\circ}$) was obtained at $400^{\circ}C$. The anti-contamination properties were measured, revealing that as the contact angle decreased, the anti-contamination properties improved. The hardness and adhesion were small at the natural curing condition however the excellent mechanical properties were obtained under higher temperature annealing.

태양전지의 반사방지막을 위한 Silica 코팅의 트라이볼로지 및 광학적 특성 평가 (Tribological and Optical Characteristics of Silica Coating for Anti-reflection Coating of Solar Cell)

  • 김해진;김대은
    • 정보저장시스템학회논문집
    • /
    • 제6권2호
    • /
    • pp.68-73
    • /
    • 2010
  • The interest in acquiring high efficiency solar cells has been steadily increasing due to various advantages such as low-cost installation, pollution free and everlasting energy generation. In order to raise the cell efficiency, there has been a lot of effort to develop effective anti-reflection coatings. In this work, the main objective was to investigate the effects of particle size and annealing temperature of silica anti-reflection coatings to maximize the cell efficiency as well as reliability. It was shown that the light transmittance could be increased by a few percent over a certain range of wavelength using the silica coating. Also, the tribological properties of the coating could be improved through the annealing process, which led to better reliability of the coating.

RTV 실리콘 고무의 표면열화와 내오손 특성과의 상관관계 (Relation between Surface degradation and Anti-pollution Characteristics in RTV Silicone Rubber)

  • 연복희;이태호;허창수;이상엽
    • 한국전기전자재료학회논문지
    • /
    • 제13권7호
    • /
    • pp.598-606
    • /
    • 2000
  • In this paper we investigated the relation between the surface degradations and anti-pollution characteristics of Room Temperature Vulcanized(RTV) silicone rubber coating that has different roughness through immersing into saline water. We utilized several analytic techniques such as atomic force microscopy(AFM) scaning electron microscopy(SEM) contact angle Salt Deposit Density(SDD) and average leakage current under the condition of salt fog. It is found that the surface roughness of treated RTV silicone rubber increased and the hydrophobicity of sample surface decreased with increasing the duration o immersion into water due to the erosion of base polymer the melting down alumina trihydrate(ATH) and the diffusion of Low Molecular weight(LMW) fluid. Despite the roughness of surface had been increased by water immersion excellant anti-pollution and recovery characteristics were maintained and SDD saturated to 0.1~0.14mg/cm$^2$. The average leakage current under salt fog increased with surface roughness. Measurement of average leakage current will be helpful to investigate surface degradation and lifetime expectation of RTV silicone coating.

  • PDF

기능성 나노코팅 박막의 열처리 분위기에 따른 특성분석 및 오염방지 태양광 모듈제작 (Characteristic Analysis of Functional Nano-coating Films Synthesized according to the Annealing Ambient and Fabrication of Anti-pollution PV Module)

  • 강현일;신승권;김형철;임윤식;유영식;정연호;김정현;최원석
    • 전기학회논문지P
    • /
    • 제64권3호
    • /
    • pp.182-186
    • /
    • 2015
  • We investigated that effects of annealing ambient on the characteristics of functional nano thin film synthesized on glass substrate. The functional nano thin films were annealed by using rapid thermal annealing (RTA) equipment in vacuum, oxygen and nitrogen ambient, respectively. The hardness of the functional nano thin films were measured by a standard hardness testing method (ASTM D3363) such as a H-9H, F, HB and B-6B pencil (Mitsubishi, Japan). Also, the adhesion of the functional nano thin films were measured by a standard adhesion testing method (ASTM D3359) using scotch tape (3M, Korea). The contact angle of the functional nano thin films was measured by a contact angle analyzer (Phoenix 300 Touch, S.E.O.). The optical property of functional nano thin films was measured via UV-visible spectroscopy (S-3100, Scinco).

셀룰로오스 나노 섬유와 AKD를 활용한 방오 코팅제에 의한 콘크리트 표면의 소수 특성 분석 (An Analysis of Hydrophobic Characteristics of Concrete Surfaces by Antifouling Coating Agent using Cellulose Nonofiber and Alkyl Ketene Dimer)

  • 장낙섭;노치훈;오홍섭
    • 한국건설순환자원학회논문집
    • /
    • 제11권2호
    • /
    • pp.120-129
    • /
    • 2023
  • 해양구조물은 염분에 의한 손상뿐만 아니라 해양미생물과 부유물질의 착상 등에 의해 추가적인 손상이 발생하게 되며, 이를 억제하기 위하여 선박등의 경우에는 주기적인 도장을 통하여 필요성능을 유지하고 있다. 그러나 콘크리트 또는 강재지지구조는 주기적인 도장이 어렵고 해양환경의 오염위험이 존재하는 것이 사실이다. 본 연구에서는 친수성 셀룰로오스 나노섬유와 AKD를 사용하여 소수성능을 갖는 친환경 재료를 사용하여 방오코팅제를 개발하였다. 균질한 배합을 위해 나노섬유의 함량을 1 %로 고정하고, AKD, 증류수와 폐유리를 디지털 교반기와 호모게나이져로 교반 제작하였다. 제작된 코팅제의 접촉각은 130°이상으로 나타났으며, 15°기울기의 물방울 흐름시험에서도 충분한 성능을 갖추고 있어 자가세척기능을 갖춘 것으로 판단된다. 또한 온도에 따른 점성 특성 분석을 통해 상온에서 시공이 가능한 것을 확인하였으며, 미세구조 분석을 통해 콘크리트표면에 코팅제가 균질하게 도포되는 것을 확인하였다.

수처리시설용 콘크리트의 금속용사 피막 종류에 따른 내오존성 및 전기화학적 방식 성능 평가 (Evaluation of Ozone Resistance and Anti-Corrosion Performance of Water Treatment Concrete according to Types of Metal Spray Coating)

  • 박진호;최현준;이한승;김상열;장현오
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제23권4호
    • /
    • pp.61-68
    • /
    • 2019
  • 산업화, 도시화로 인해 수자원의 오염이 악화 되면서 기존에 염소를 이용한 정수처리 방법으로는 깨끗한 물을 공급하는데 어려운 실정이다. 이에 오존을 이용한 고도정수 처리 시설의 도입이 증가하고 있다. 그러나 기존의 방수 방식 공법으로 사용되는 에폭시계 방수 방식제 및 스테인리스는 오존의 강력한 산화력으로 인해 열화되어 박리 등 문제 발생하였으며, 콘크리트까지 영향을 미쳐 내구성 저하의 원인이 된다. 이에 따라 본 연구에서는 내오존성 및 내화학성이 뛰어난 금속 패널을 기존의 시공법 보다 손쉬운 방법으로 시공하기 위한 방법으로 금속 용사 공법을 이용하여 수처리 시설 콘크리트 구조물의 열화를 원천적으로 방지하기 위한 마감공법 개발 연구의 일원으로 용사금속 종류 에 따른 내오존성 평가를 실시하였으며, 실제 하수처리장 환경에서의 전기화학적 안정성능 평가를 실시하였다. 실험결과 용사금속 Ti이 용사 후에도 내오존성이 뛰어난 것으로 나타났으며, 하수처리장 환경에서의 전기화학적 안정성능 평가 결과 용사금속 Ti가 $403.83k{\cdot}{\Omega}{\cdot}cm^2$의 가장 높은 분극저항을 나타남으로써 높은 수준의 내구성을 확보하는 것을 확인할 수 있었다.

Polydopamine (PDA)-TiO2 코팅 유리섬유 직물을 이용한 VOCs의 저감 성능 및 항균성 연구 (Reduction of VOCs and the Antibacterial Effect of a Visible-Light Responsive Polydopamine (PDA) Layer-TiO2 on Glass Fiber Fabric)

  • 박서현;최예인;이홍주;박찬규
    • 한국환경보건학회지
    • /
    • 제47권6호
    • /
    • pp.540-547
    • /
    • 2021
  • Background: Indoor air pollutants are caused by a number of factors, such as coming in from the outside or being generated by internal activities. Typical indoor air pollutants include nitrogen dioxide and carbon monoxide from household items such as heating appliances and volatile organic compounds from building materials. In addition there is carbon dioxide from human breathing and bacteria from speaking, coughing, and sneezing. Objectives: According to recent research results, most indoor air pollution is known to be greatly affected by internal factors such as burning (biomass for cooking) and various pollutants. These pollutants can have a fatal effect on the human body due to a lack of ventilation facilities. Methods: We fabricated a polydopamine (PDA) layer with Ti substrates as a coating on supported glass fiber fabric to enhance its photo-activity. The PDA layer with TiO2 was covalently attached to glass fiber fabric using the drop-casting method. The roughness and functional groups of the surface of the Ti substrate/PDA coated glass fiber fabric were verified through infrared imaging microscopy and field emission scanning electron microscopy (FE-SEM). The obtained hybrid Ti substrate/PDA coated glass fiber fabric was investigated for photocatalytic activity by the removal of ammonia and an epidermal Staphylococcus aureus reduction test with lamp (250 nm, 405 nm wavelength) at 24℃. Results: Antibacterial properties were found to reduce epidermal staphylococcus aureus in the Ti substrate/PDA coated glass fiber fabric under 405 nm after three hours. In addition, the Ti substrate/PDA coated glass fiber fabric of VOC reduction rate for ammonia was 50% under 405 nm after 30 min. Conclusions: An electron-hole pair due to photoexcitation is generated in the PDA layer and transferred to the conduction band of TiO2. This generates a superoxide radical that degrades ammonia and removes epidermal Staphylococcus aureus.