• Title/Summary/Keyword: Anti-oxidization coating

Search Result 4, Processing Time 0.022 seconds

Study on Anti-oxidization Coating for Staged Combustion Cycle Rocket Engine (다단연소 사이클 엔진 적용을 위한 내산화 코팅에 관한 연구)

  • Kim, Young-June;Byon, Eung-Sun;Rhee, Byong-ho;Han, Yeoung-Min;Noh, Yong-Oh;Bae, Byung-Hyun;Hyun, Seong-Yoon;Cho, Hwang-Rae;Bang, Jeong-Suk
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.864-870
    • /
    • 2017
  • The propellants are burned in the pre-burner of the staged combustion cycle engine, and the resulting hot gas drives the turbine, and the turbine operates the turbo pump. The burned gas passing through the turbo pump is supplied to the combustor at high temperature and high pressure, where the gas is supplied in an excess of fuel or an excess of oxidant depending on the amount of fuel or oxidant. When the cycle works at oxidizer-rich staged combustion, its metal pipe can ignite or explode by the impact of even small particles. In this study, we develop the powder combinations for anti-oxidation coating through the analysis of other coating materials and establish the coating process.

  • PDF

A Study on Anti-oxidization Coating for Staged Combustion Cycle Rocket Engines (다단연소 사이클 엔진 적용을 위한 내산화 코팅에 관한 연구)

  • Kim, Young-June;Rhee, Byong-ho;Noh, Yong-Oh;Bae, Byung-Hyun;Hyun, Seong-Yoon;Cho, Hwang-Rae;Bang, Jeong-Suk;Byon, Eung-Sun;Han, Yeoung-Min
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.5
    • /
    • pp.125-131
    • /
    • 2018
  • Some propellants in a liquid rocket engine are burned in the pre-burner of a staged combustion cycle engine, resulting hot gas drives the turbine. The burned gas passing through the turbine is supplied to the combustor at high temperature and pressure. The form of the gas can be fuel rich or oxidizer rich dependent upon the mixture ratio or the engine scheme. When the cycle works at oxidizer-rich condition, the metal pipes composing the engine can be ignited or even exploded by an impact of very a small particle. In this study, we developed the powder combination and processes for an anti-oxidation coating through the analysis of various coating materials.

A Study on the Corrosion Behavior of Magnesium Alloy Sealed with Chemical Conversion Coating and Sol-gel Coating

  • Lee, Dong Uk;Chaudhari, Shivshankar;Choi, Seung Yong;Moon, Myung Jun;Shon, Min Young
    • Corrosion Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.175-182
    • /
    • 2021
  • Magnesium alloy is limited in the industrial field because its standard electrode potential is -2.363 V vs. NHE (Normal Hydrogen Electrode) at 25 ℃. This high electrochemical activity causes magnesium to quickly corrode with oxygen in air; chemical conversion coating prevents corrosion but causes surface defects like cracks and pores. We have examined the anti-corrosion effect of sol-gel coating sealed on the defected conversion coating layer. Sol-gel coatings produced higher voltage current and smaller pore than the chemical conversion coating layer. The conversion coating on magnesium alloy AZ31 was prepared using phosphate-permanganate solution. The sol-gel coating was designed using trimethoxymethylsilane (MTMS) and (3-Glycidyloxypropyl) trimethoxysilane (GPTMS) as precursors, and aluminum acetylacetonate as a ring-opening agent. The thermal shock resistance was tested by exposing specimens at 140 ℃ in a convection oven; the results showed changes in the magnesium alloy AZ31 surface, such as oxidization and cracking. Scanning electron microscope (FE-SEM) analysis confirmed a sealed sol-gel coating layer on magnesium alloy AZ31. Electrochemical impedance spectroscopy (EIS) measured the differences in corrosion protection properties by sol-gel and conversion coatings in 0.35 wt% NaCl solution, and the potentiodynamic polarization test and confirmed conversion coating with the sol-gel coating show significantly improved resistance by crack sealing.

Methodological approach of evaluation on prefabrication primers for steel structures

  • Chung, Sung-Wook;Hyun, Jeong-Hun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.707-717
    • /
    • 2021
  • To the date, shipbuilding companies have applied shop primer coating which protects the steel surface from global oxidization in environment. Proper shop primer requires either anti-corrosion ability during construction or anti-porosity ability during welding, and those properties contradict to each other. This report tried to derive an optimizing parameter on these conflicting properties to select a proper shop primer. First, sufficient amounts of the natural salt spray tests were carried out to achieve a series of data for the anti-corrosion ability. Second, lots of T-joint fillet welding test were performed to evaluate the trapped porosity formed in the weld pool. According to the experimental data, we could achieve either the rust-formation rate or the porosity-formation rate, then, each rate was generalized as formulae. Then, we tried to combine these conflicting properties to decide an optimum shop primer.