• Title/Summary/Keyword: Anti-oxidative capacity

Search Result 114, Processing Time 0.035 seconds

Investigation of Anti-inflammatory and Anti-oxidative Activities of Lonicerae Flos, Citri Pericarpium and Violae Herba Complex (LCVC)

  • Hong Kyoung Kim
    • The Journal of Korean Medicine
    • /
    • v.43 no.4
    • /
    • pp.52-73
    • /
    • 2022
  • Objectives: The anti-inflammatory and anti-oxidative activities of LCVC (Lonicerae Flos, Citri Pericarpium and Violae Herba Complex) have not been fully elucidated. The purpose of this study was to investigate the mechanisms underlying these effects in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages. Methods: The evaluation of the anti-oxidative activity of LCVC was completed via DPPH and ABTS radical scavenging capacity, FRAP assay, measurement of polyphenol and flavonoid, assessment of ROS and NO levels in LPS-induced RAW 264.7 cells. The anti-inflammatory activity was defined by measuring the production of biomarkers (PGE2, IL-1B, IL-6 and TNF-𝛼), proteins (ERK, JNK, P38, Nrf2, Keap1, HO-1 and NQO1) and expressions of genes (iNOS, COX-2, IL-1𝛽, IL-6, TNF-𝛼, Nrf2, Keap1, HO-1 and NQO1) in LPS-induced RAW 264.7 cells. Results: LCVC have polyphenol and flavonoid contents. The results of DPPH and ABTS free radical scavenging capacity and FRAP assay showed that the anti-oxidative activity was increased. Production of ROS, NO, IL-6, TNF-𝛼, mRNA expressions of IL-1𝛽, IL-6, TNF-𝛼, Keap1, iNOS and COX-2 were decreased, and NQO1, Nrf2, and HO-1 were increased. In protein expression, JNK and Keap1 were decreased, NQO1, Nrf2 and HO-1 were increased, and no relationships were observed with the ERK and P38 by LCVC. Conclusions: These results suggest that LCVC may offer protective effects against LPS-induced inflammatory and oxidative responses through attenuating Nrf2/HO-1 pathway and MAPKs pathway. Therefore, we propose that LCVC has anti-inflammatory and anti-oxidative activities that have therapeutic potential in the treatment of inflammatory and oxidative disorders caused by the over-activation of macrophages.

A Study on the Anti-oxidative Activities of Rhodiola rosea Root (Rhodiola rosea Root의 항산화(抗酸化) 효능에 대한 연구)

  • Lee, Young-Jong
    • The Korea Journal of Herbology
    • /
    • v.27 no.6
    • /
    • pp.91-98
    • /
    • 2012
  • Objectives : Rhodiola rosea L. (Crassulaceae) is a plant living at the areas of high-altitude mountain, and Rhodiolae Radix(the root of R. rosea) has been used as a traditional medicine to decrease the symptoms of mental- or physical-stress in Asia and Europe. To examine the efficacy of Rhodiolae Radix on the oxidative stress, the anti-oxidative effects of the radix were examined, Methods : The effects of Rhodiolae Radix on several oxidative factors were examined in vitro, and also the effects were tested in the liver of rats which were treated with a high dose of alcohol during 2 weeks. Results : The extract of Rhodiolae Radix in vitro scavenged some oxidants, such as DPPH, Superoxide anion radical and LDL, and the extract also inhibited the oxidative capacity of linoleic acid, significantly. Meanwhile, in the in vivo test, the methanol-extract decreased some oxidation parameters, such as relative liver weight, TBARS and SOD activities, and also increased catalase activity in the liver of alcohol-loaded rats, But, the extract had no effects on GSH content and GSH-px activiy in the rats. Conclusion : The root of Rhodiola rosea has a strong anti-oxidative capacity, and also has some preventive properties aginst the alcoholic stress.

Anti-oxidative capacity of mulberry genetic resources (뽕나무 유전자원의 항산화능 비교)

  • Kim, Hyun-bok;Seok, Young-Seek;Seo, Sang-Deok;Sung, Gyoo Byung;Kim, Sung-Kuk;Jo, You-Young;Kweon, HaeYong;Lee, Kwang-Gill
    • Journal of Sericultural and Entomological Science
    • /
    • v.53 no.2
    • /
    • pp.71-77
    • /
    • 2015
  • Much attention has been focused on the activity of the natural antioxidants present in fruits and vegetables, because potentially these components may reduce the level of oxidative stress. Especially, mulberry leaves containing many natural components are considerable resource for natural antioxidants. The antioxidant capacity of mulberry leaves was investigated with minilum L-100 device and ARAW-KIT (anti-radical ability of water-soluble substance), in comparison to the ascorbic acid. The antioxidant capacity of 16 varieties was 3303.4 nmol at opening stage of five leaves in spring. The highest stage of antioxidant capacity (3708.0 nmol) and yield rate was just before the coloration stage with anthocyanin in fruits, whereas the lowest stage was middle of June (2231.6 nmol) and about two months growing stage after summer pruning (2064.6 nmol). But after summer pruning, the antioxidant capacity of mulberry leaves increased gradually until just before fallen leaves stage. Even if samples were same variety, antioxidant effect of those showed different results according to collected regions. Also, antioxidant effect of mulberry leaves were higher than that of branches. The antioxidant capacity of yield-type mulberry leaves and fruits (Morus alba L., M. bombycis Koidz, and M. Lhou (Ser.) Koidz) collected from In-je, Won-ju and Yang-yang regions, Kang-won province, Korea, was investigated. The results indicated that total antioxidant capacity of yield-type mulberry leaves was 2711.2 nmol. In the antioxidant capacity analysis of Jeollabuk-Do genetic resources, autumn's mulberry leaves showed higher antioxidant capacity than that of spring's it. To investigate the effect of tea on antioxidative capacity, five kinds of tea(coffee mix, green tea added brown rice, mulberry leaf tea, Polygonatum odoratum tea and black tea added lemon) were selected and analyzed. Their's anti-oxidative capacity were 2,531.01 nmol, 1,867.42 nmol, 1,053.72 nmol, 292.71 nmol and 188.91 nmol, respectively. The antioxidative capacity of drinking water soaked with mulberry leaf showed 891.96 nmol.

Anti-oxidant Effect of Agastache rugosa on Oxidative Damage Induced by $H_2O_2$ in NIH 3T3 Cell

  • Hong, Se-Chul;Jeong, Jin-Boo;Park, Gwang-Hun;Kim, Jeong-Sook;Seo, Eul-Won;Jeong, Hyung-Jin
    • Korean Journal of Plant Resources
    • /
    • v.22 no.6
    • /
    • pp.498-505
    • /
    • 2009
  • The plant Agastache rugosa Kuntze has various physiological and pharmacological activities. Especially, it has been regarded as a valuable source for the treatment of anti-inflammatory and oxidative stress-induced disorders. However, little has been known about the functional role of it on oxidative damage in mammalian cells by ROS. In this study, we investigated the DPPH radical, hydroxyl radical, hydrogen peroxide and intracellular ROS scavenging capacity, and $Fe^{2+}$ chelating activity of the extracts from Agastache rugosa. In addition, we evaluated whether the extract can be capable of reducing $H_2O_2$-induced DNA and cell damage in NIH 3T3 cells. These extracts showed a dose-dependent free radical scavenging capacity and a protective effect on DNA damage and the lipid peroxidation causing the cell damage by $H_2O_2$. Therefore, these results suggest that Agastache rugosa is useful as a herbal medicine for the chemoprevention against oxidative carcinogenesis.

The antioxidative and cytoprotective effect of Lonicerae japonicae Flos water extracts on the ultraviolet(UV)B-induced human HaCaT keratinocytes (금은화 물추출물의 항산화 효과와 Ultraviolet(UV)B로 유도된 사람 각질형성세포 손상에 대한 보호효과)

  • Seo, Seung-Hee;Bae, Gi-Sang;Choi, Sun Bok;Jo, Il-Joo;Kim, Dong-Goo;Shin, Joon-Yeon;Song, Ho-Joon;Park, Sung-Joo;Choi, Mee-Ok
    • The Korea Journal of Herbology
    • /
    • v.29 no.6
    • /
    • pp.63-71
    • /
    • 2014
  • Objectives : Lonicerae japonicae Flos(LJF) has been reported to exhibit anti-oxidant, anti-inflammatory, anti-viral, anti-rheumatoid properties. However, it is still largely unknown whether LJF inhibits the ultraviolet(UV)B-induced oxidative damage in human HaCaT keratinocytes. Therefore in this paper, we investigated the anti-oxidative capacity and protective effect of LJF against UVB-induced oxidative demage in human HaCaT keratinocytes. Methods : To evaluate the anti-oxidative activity of LJF extracts, we measured total phenolic contents, total flavonoid contents, antioxidant capacity, and superoxide scavenging activity. To give an oxidative stress to HaCaT cells, UVB was irradiated with $200mJ/cm^2$ to HaCaT cells. To detect the protective effect of LJF against UVB, we measured cell viability, DNA fragmentation and reactive oxygen species (ROS) production. In addition, we performed high-performance liquid chromatography (HPLC) analysis to find a major component of LJF. Results : LJF contained phenolic and flavonoid contents, and showed the anti-oxidant and superoxide scavenging activity. The UVB-induced oxidative conditions led to the cell death, DNA fragmentation and reactive oxygen species (ROS) production. However, pretreatment with LJF reduced oxidative conditions, including inhibition of cell death, DNA fragmentation and ROS production. In addition, we found out chlorogenic acid as major component of LJF. Conclusions : These results could suggest that LJF contained anti-oxidative contents and exhibited protective effects against UVB on human HaCaT keratinocytes. And the effective compound of LJF which could show protective activities against UVB is chlorogenic acid. Thus, LJF and chlorogenic acid would be useful for the development of drug or cosmetics treating skin troubles.

Anti-Oxidative and Anti-Inflammatory Activities of Seven Medicinal Herbs including Tetrapanax papyriferus and Piper longum Linne (통초, 필발을 포함한 7종 한약재 추출물의 항산화 및 항염증 활성)

  • Jin, Kyong-Suk;Oh, You Na;Lee, Ji Young;Son, Byung Yil;Choi, Woobong;Lee, Eun-Woo;Kwon, Hyun Ju;Kim, Byung Woo
    • Microbiology and Biotechnology Letters
    • /
    • v.41 no.2
    • /
    • pp.253-262
    • /
    • 2013
  • In this study, we analyzed the anti-oxidative and anti-inflammatory activities of seven medicinal herbs. All extracts of the tested herbs, Euryale ferox Salisbury, Echinops setifer Iljin, Amomum cardamomum Linne, Tetrapanax papyriferus, Illicium verum Hook. f., Typha orientalis Presl, and Piper longum Linne, exhibited potent anti-oxidative activity as confirmed by DPPH radical scavenging capacity. Lipopolysaccharide (LPS) induced nitric oxide (NO) production, in the RAW 264.7 cell line, was also ameliorated by all extracts' treatments in a dose dependent manner. NO suppressive activity originated from the inhibition of inducible nitric oxide synthase (iNOS) protein expression by the extracts. Three extracts, E. ferox S., I. verum Hook. f., and P. longum L., possessed suppressive activity against, not only iNOS, but also cycloxygenase 2 (COX-2) protein expression. These three extracts may then serve as potential candidates for non steroidal analgesic inflammation drugs (NSAIDs). Furthermore, all extracts induced anti-oxidative enzyme, heme oxygenase 1, protein expression. Taken together, these results provide an important new insight into the fact that various medicinal herbs possess potent anti-oxidative and anti-inflammatory activities and might be utilized as promising agents in the field of health products. Further studies for the identification of the active compounds from medicinal herbs are clearly needed.

Effects of gamgook(Chrysanthemum indicum L.) herbal-acupuncture on lipid lowering effect, anti-oxidative capacity and anti-inflammatory effect in rat fed high oxidized fat (감국약침이 과산화지질을 급여한 흰쥐의 지질대사, 항산화 및 면역계에 미치는 영향)

  • Lim, Yun-Taek;Lee, Hyang-Sook;Lee, Joon-Moo;Lee, Eun
    • Korean Journal of Acupuncture
    • /
    • v.26 no.2
    • /
    • pp.109-126
    • /
    • 2009
  • Objectives: To investigate the effects of Chrysanthemum indicum L. pharmacopuncture on lipids, antioxidant capacity and anti-inflammation in rats fed high-fat diet. Methods: Hyperlipidemic rats induced by high-fat diet were divided into 5 groups: no treatment control (normal, n=8), high-fat diet only control (control, n=8), high-fat diet and Chrysanthemum indicum L. pharmacopuncture at CV4 group (TI, n=8), high-fat diet and Chrysanthemum indicum L. pharmacopuncture at CV17 group (TII, n=8), and high-fat diet and Chrysanthemum indicum L. pharmacopuncture at EX-HN3 group (TIII, n=8). They were given pharmacopuncture accordingly every other day for two weeks followed by analyses of lowering lipids effects, oxidative capacity and anti-inflammatory effects. Results: Compared with the control, pharmacopuncture groups showed significantly decreased plasma total cholesterol (TC), liver thiobarbituric acid reactive substance (TBARS), catalase, glutathione peroxidase, neutrophils, monocytes, plasma and liver IL-$1{\beta}$, and plasma and liver IL-6. In other parameters including plasma and liver triglyceride, liver TC, LDL-cholesterol, HDL-cholesterol, liver TBARS, supraoxide dismutase, total protein, albumin, blood cell analysis, plasma and liver TNF-$\alpha$, and IL-10, there was no significant difference between control and pharmacopuncture groups. No clear acupoint-specificity was observed. Conclusions: Chrysanthemum indicum L. pharmacopuncture may improve control of hyperlipidemia.

  • PDF

Four active monomers from Moutan Cortex exert inhibitory effects against oxidative stress by activating Nrf2/Keap1 signaling pathway

  • Zhang, Baoshun;Yu, Deqing;Luo, Nanxuan;Yang, Changqing;Zhu, Yurong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.5
    • /
    • pp.373-384
    • /
    • 2020
  • Paeonol, quercetin, β-sitosterol, and gallic acid extracted from Moutan Cortex had been reported to possess anti-oxidative, anti-inflammatory, and anti-tumor activities. This work aimed to illustrate the potential anti-oxidative mechanism of monomers in human liver hepatocellular carcinoma (HepG2) cells-induced by hydrogen peroxide (H2O2) and to evaluate whether the hepatoprotective effect of monomers was independence or synergy in mice stimulated by carbon tetrachloride (CCl4). Monomers protected against oxidative stress in HepG2 cells in a dose-response manner by inhibiting the generation of reactive oxygen species, increasing total antioxidant capacity, catalase and superoxide dismutase (SOD) activities, and activating the antioxidative pathway of nuclear factor E2-related factor 2/Kelch-like ECH-associated protein 1 (Nrf2/Keap1) signaling pathway. We found that the in vitro antioxidant capacities of paeonol and quercetin were better than those of β-sitosterol and gallic acid. Furthermore, paeonol apparently diminished the levels of alanine transaminase and aspartate aminotransferase, augmented the contents of glutathione and SOD, promoted the expressions of Nrf2 and heme oxygenase-1 proteins in mice stimulated by CCl4. In HepG2 cells, paeonol, quercetin, β-sitosterol, and gallic acid play a defensive role against H2O2-induced oxidative stress through activating Nrf2/Keap1 pathway, indicating that these monomers have anti-oxidative properties. Totally, paeonol and quercetin exerted anti-oxidative and hepatoprotective effects, which is independent rather than synergy.

The root extract of Paeonia lactiflora Pall inhibits the oxidative damage via its anti-oxidant activity

  • Yun, Ji Young;Jeong, Jin Boo;Eo, Hyun Ji;Kwon, Kun Woo;Hong, Se Chul;Jeong, Hyung Jin;Koo, Jin Suk
    • The Korea Journal of Herbology
    • /
    • v.27 no.6
    • /
    • pp.7-13
    • /
    • 2012
  • Objectives : Reactive oxygen species (ROS) have been associated with pathogenic processes including carcinogenesis through direct effect on DNA directly and by acting as a tumor promoter. Therefore, it has been regarded that ROS may be a major target for cancer prevention. The root of Paeonia lactiflora pall (PL), a traditional Chinese herb, has been a component of effective prescriptions for treatment of liver disease. Also, there are some reports about the antioxidant activities of the extracts from PL. However, little has been known about the effects of PL against oxidative damage. This work aimed to elucidate the anti-oxidant effects of Paeonia lactiflora pall (PL) in the non-cellular system and cellular system. Methods : Antioxidant activities of PL were evaluated by hydroxyl radical scavenging assay and $Fe^{2+}$ chelating assay. Anti-oxidative effect of PL was evaluated by ${\varphi}X$-174 RF I plasmid DNA cleavage assay in non-cellular system. In addition, DNA migration assay, expression level of phospho-H2AX, MTT assay and lipid peroxidation assay were performed for evaluate the anti-oxidative effect of PL in cellular system. Results : PL had a dose-dependent hydroxyl radical scavenging and $Fe^{2+}$ chelating capacity. In addition, PL inhibited oxidative DNA and cell damage induced by hydroxyl radical in non-cellular system and cellular system. Conclusion : Taken together, P. lactiflora pall may be possible for the application to a potential drug for treating the oxidative diseases such as cancer.

Anti-oxidative and Anti-inflammatory Activities of Desmodium heterocarpon Extract in RAW 264.7 Cells (RAW 264.7 세포에서 Desmodium heterocarpon 추출물의 항산화 및 항염증 활성)

  • Lee, Su Hyeon;Jin, Kyong-Suk;Son, Yu Ri;Kwon, Hyun Ju;Kim, Byung Woo
    • Journal of Life Science
    • /
    • v.28 no.2
    • /
    • pp.216-222
    • /
    • 2018
  • Desmodium heterocarpon is one of vines belongs to Fabaceae family, mainly distributed in Asian countries such as Korea and Japan. This study was conducted to explore new nutraceutical resources from the plant kingdom possessing biological activities. To fulfill this purpose, the anti-oxidative and anti-inflammatory activities of D. heterocarpon ethanol extract (DHEE) were evaluated by 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical scavenging activity assay, reactive oxygen species (ROS) scavenging activity assay, nitric oxide (NO) inhibitory activity assay, and the analysis of related protein expressions by Western blot hybridization. DHEE exhibited potent anti-oxidative activity as confirmed by DPPH radical scavenging capacity against DPPH similar with ascorbic acid, a well-known anti-oxidative agent, used as a positive control. DHEE also effectively suppressed hydrogen peroxide ($H_2O_2$)-induced ROS on RAW 264.7 murine macrophage cells. Furthermore, DHEE induced the expression of the anti-oxidative enzyme heme oxygenase 1 (HO-1), and its upstream transcription factor, nuclear factor-E2-related factor 2 (Nrf2) as a dose dependent manner. DHEE inhibited lipopolysaccharide (LPS) induced nitric oxide (NO) formation as a consequence of inducible NO synthase (iNOS) down regulation. Taken together, these results suggest that DHEE has anti-oxidative and anti-inflammatory activities and thus appears to be useful sources as potential anti-oxidant and anti-inflammatory agents. The identification of active compounds that confer biological activities of DHEE might be needed.