• Title/Summary/Keyword: Anti-nociceptive

Search Result 85, Processing Time 0.059 seconds

Analgesic effects of eucalyptus essential oil in mice

  • Lee, Ganggeun;Park, Junbum;Kim, Min Sun;Seol, Geun Hee;Min, Sun Seek
    • The Korean Journal of Pain
    • /
    • v.32 no.2
    • /
    • pp.79-86
    • /
    • 2019
  • Background: The use of aroma oils dates back to at least 3000 B.C., where it was applied to mummify corpses and treat the wounds of soldiers. Since the 1920s, the term "aromatherapy" has been used for fragrance therapy with essential oils. The purpose of this study was to determine whether the essential oil of Eucalyptus (EOE) affects pain pathways in various pain conditions and motor coordination. Methods: Mice were subjected to inhalation or intraperitoneal injection of EOE, and its analgesic effects were assessed by conducting formalin, thermal plantar, and acetic acid tests; the effects of EOE on motor coordination were evaluated using a rotarod test. To determine the analgesic mechanism, 5'-guanidinonaltrindole (${\kappa}$-opioid antagonist, 0.3 mg/kg), naltrindole (${\delta}$-opioid antagonist, 5 mg/kg), glibenclamide (${\delta}$-opioid antagonist, 2 mg/kg), and naloxone (${\mu}$-opioid antagonist, 4, 8, 12 mg/kg) were injected intraperitoneally. Results: EOE showed an analgesic effect against visceral pain caused by acetic acid (EOE, 45 mg/kg); however, no analgesic effect was observed against thermal nociceptive pain. Moreover, it was demonstrated that EOE did not have an effect on motor coordination. In addition, an anti-inflammatory effect was observed during the formalin test. Conclusions: EOE, which is associated with the ${\mu}$-opioid pain pathway, showed potential effects against somatic, inflammatory, and visceral pain and could be a potential therapeutic agent for pain.

The antinociceptive effect of artemisinin on the inflammatory pain and role of GABAergic and opioidergic systems

  • Dehkordi, Faraz Mahdian;Kaboutari, Jahangir;Zendehdel, Morteza;Javdani, Moosa
    • The Korean Journal of Pain
    • /
    • v.32 no.3
    • /
    • pp.160-167
    • /
    • 2019
  • Background: Pain is a complex mechanism which involves different systems, including the opioidergic and GABAergic systems. Due to the side effects of chemical analgesic agents, attention toward natural agents have been increased. Artemisinin is an herbal compound with widespread modern and traditional therapeutic indications, which its interaction with the GABAergic system and antinoniceptive effects on neuropathic pain have shown. Therefore, this study was designed to evaluate the antinociceptive effects of artemisinin during inflammatory pain and interaction with the GABAergic and opioidergic systems by using a writhing response test. Methods: On the whole, 198 adult male albino mice were used in 4 experiments, including 9 groups (n = 6) each with three replicates, by intraperitoneal (i.p.) administration of artemisinin (2.5, 5, and 10 mg/kg), naloxone (2 mg/kg), bicuculline (2 mg/kg), saclofen (2 mg/kg), indomethacin (5 mg/kg), and ethanol (10 mL/kg). Writhing test responses were induced by i.p. injection of 10 mL/kg of 0.6% acetic acid, and the percentage of writhing inhibition was recorded. Results: Results showed significant dose dependent anti-nociceptive effects from artemisinin which, at a 10 mg/kg dose, was statistically similar to indomethacin. Neither saclofen nor naloxone had antinociceptive effects and did not antagonize antinociceptive effects of artemisinin, whereas bicuculline significantly inhibited the antinocicptive effect of artemisinin. Conclusions: It seems that antinocicptive effects of artemisinin are mediated by $GABA_A$ receptors.

α-Pinene Sensing Properties of Rhombohedral In2O3 Nanoparticles Prepared using the Microwave-assisted Hydrothermal Method (마이크로파 보조 수열 합성법으로 제조한 Rhombohedral In2O3 나노입자의 α-pinene 감지 특성)

  • Byeong-Hun, Yu;Hyo Jung, Lee;Joo Ho, Hwang;Ji-Wook, Yoon
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.418-422
    • /
    • 2022
  • α-pinene is a natural volatile organic compound secreted by coniferous trees to protect themselves from attacks by insects, microorganisms, and viruses. Recently, studies have reported that α-pinene possesses pharmacological effects on various biological reactions such as anxiolytic, sleep-enhancing, anti-nociceptive, and inflammatory activity. Thus, forest bathing has recently received great attention as a novel therapy for treating severe diseases as well as psychological issues. However, appropriate places and timings for effective therapies are still veiled, because on-site monitoring of α-pinene gas in forests is barely possible. Although portable chemosensors could allow real-time analysis of α-pinene gas in forests, the α-pinene sensing properties of chemosensors have never been reported thus far. Herein, we report for the first time, the α-pinene sensing properties of an oxide semiconductor gas sensor based on rhombohedral In2O3 (h-In2O3) nanoparticles prepared by a microwave-assisted hydrothermal reaction. The h-In2O3 nanoparticle sensor showed a high response to α-pinene gas at ppm levels, even under humid conditions (for example, relative humidity of 50 %). The purpose of this research is to identify the potential of oxide semiconductor gas sensors for implementing portable devices that can detect α-pinene gas in forests in real-time.

Coexpression of $P2X_3$ with TRPV1 in the Rat Trigeminal Sensory Nuclei (흰쥐 삼차신경감각핵에서 $P2X_3$와 TRPV1의 공존에 관한 연구)

  • Moon, Yong-Suk;Ryoo, Chang-Hyun;Cho, Yi-Sul;Kim, Hong-Tae;Park, Mae-Ja;Paik, Sang-Kyoo;Moon, Che-Il;Kim, Yun-Sook;Bae, Yong-Chul
    • Applied Microscopy
    • /
    • v.38 no.3
    • /
    • pp.151-157
    • /
    • 2008
  • Trigeminal primary afferents expressing $P2X_3$ or transient receptor potential vanilloid 1 (TRPV1) are involved in the transmission of nociceptive information. In order to characterize $P2X_3$- and TRPV1-immunopositive neurons in the trigeminal ganglion (TG) and trigeminal caudal nucleus (Vc), we performed immunofluorescence experiments using anti-$P2X_3$ and anti-TRPV1 antisera and a morphometric analysis. 77.4% (1,401/1.801) of all the $P2X_3$-postive neurons coexpressed TRPV1 and 51.9% (1,401/2,698) of all the THFV1-immunopositive neurons also costained for $P2X_3$ in the TG. Immunoreactivity for both $P2X_3$ and TRPV1 were present in medium-sized neurons but not in small- and large-sized neurons. $P2X_3$ and/or TRPV1-immunopositive fibers were observed in the primary afferents and their associated axons in the Vc. These fibers and terminals were distributed in the superficial lamina of Vc: $P2X_3$-immunopositive fibers and terminals were distributed in the lamina I and II, expecially in the inner part of lamina II (lamina IIi), whereas TRPV1-immunopositive ones were densely detected in the lamina I and outer part of lamina II (lamina IIo). Immunopositive fibers and terminals for both $P2X_3$ and TRPV1 were observed on the border between lamina IIi and IIo. These results suggest that terminals coexpressing $P2X_3$ and TRPV1 are involved in specific roles in the transmission and processing of orofacial nociceptive information.

The Antiallodynic Effects of Intrathecal Zaprinast in Rats with Chronic Constriction Injury of the Sciatic Nerve (좌골신경 만성협착손상 흰쥐에서 척수강 내로 투여된 Zaprinast의 항이질통 효과)

  • Lee, Jae Do;Jun, In Gu;Choi, Yun Sik;Im, So Hyun;Park, Jong Yeon
    • The Korean Journal of Pain
    • /
    • v.22 no.1
    • /
    • pp.16-20
    • /
    • 2009
  • Background: Zaprinast is an inhibitor of phosphodiesterase 5, 6 and 9. Phosphodiesterase inhibitors could produce anti-nociceptive effects by promoting the accumulation of cGMP. We hypothesized that intrathecal zaprinast could attenuate the allodynia induced by chronic constriction injury of the sciatic nerve in rat. Methods: Sprague-Dawley rats were prepared with four loose ligations of the left sciatic nerve just proximal to the trifurcation into the sural, peroneal and tibial nerve branches. Tactile allodynia was measured by applying von Frey filaments to the lesioned hindpaw. The thresholds for the withdrawal responses were assessed. Zaprinast ($3-100{\mu}g$) was administered intrathecally by the direct lumbar puncture method to obtain the dose-response curve and the 50% effective dose ($ED_{50}$). Measurements were taken before and 15, 30, 45, 60, 90, 120, and 180 min after the intrathecal doses of zaprinast. The side effects were also observed. Results: Intrathecal zaprinast resulted in a dose-dependent antiallodynic effect. The maximal effects occurred within 15-30 min and then they gradually decreased down to the baseline level over time in all the groups. There was a dose dependent increase in the magnitude and duration of the effect. The $ED_{50}$ value was $17.4{\mu}g$ (95% confidence intervals; $14.7-20.5{\mu}g$). No severe motor weakness or sedation was observed in any of the rats. Conclusions: Intrathecally administered zaprinast produced a dose-dependent antiallodynic effect in the chronic constriction injury neuropathic pain model. These findings suggest that spinal phosphodiesterase 5, 6 and 9 may play an important role in the modulation of neuropathic pain.