• Title/Summary/Keyword: Anti-inflammatory agent

Search Result 667, Processing Time 0.026 seconds

Anti-inflammatory Effects of Ethanol Extract of Various Korean Compositae Herbs in LPS-induced RAW 264.7 Macrophages

  • Seo, Min-gyu;Kang, Yun-Mi;Chung, Kyung-Sook;Cheon, Se-Yun;Park, Jong Hyuk;Lee, Young-Cheol;An, Hyo-Jin
    • The Korea Journal of Herbology
    • /
    • v.32 no.2
    • /
    • pp.17-24
    • /
    • 2017
  • Objective : This study was designed to evaluate candidate materials as anti-inflammation agent from extracts of various Korean Compositae herbs in Hwaak mountain. Among Korea medicinal herbs, Ainsliaea acerifolia (AA) belongs to the Compositae family, has been used for the treatment of rheumatic arthritis. However, AA has not been previously reported to have an anti-inflammatory effect. Therefore, we investigated the anti-inflammatory effects of AA and its underlying molecular mechanisms in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages. Methods : Cell viability was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay in RAW 264.7 macrophages. Nitric oxide (NO) was measured with Griess reagent and pro-inflammatory cytokines were detected by enzyme immunoassay (EIA) kits in LPS-stimulated RAW 264.7 macrophages. Protein expressions of inducible nitric oxide synthase, and cyclooxygenase-2 (COX-2) and p65 subunit of nuclear $factor-{\kappa}B$ ($NF-{\kappa}B$) were determined by Western blot analysis. Results : Among 8 extracts of Korean Compositae herbs tested, AA showed the inhibition of NO production without cytotoxicity. Consistent with the observation, AA reduced the expression levels of iNOS and COX-2 proteins in LPS-simulated RAW 264.7 macrophages in dose-dependent manner. In addition, AA inhibited the productions of $TNF-{\alpha}$ and IL-6 in LPS-simulated RAW 264.7 macrophages. However, AA did not inhibit activation of p65 $NF-{\kappa}B$ in LPS-simulated RAW 264.7 macrophages. Conclusion : These results suggest that down-regulation of iNOS, COX-2 protein expression and $TNF-{\alpha}$ and IL-6 production by AA are responsible for its anti-inflammatory effects.

6-Shogaol and 10-Shogaol Synergize Curcumin in Ameliorating Proinflammatory Mediators via the Modulation of TLR4/TRAF6/MAPK and NFκB Translocation

  • Xian Zhou;Ahmad Al-Khazaleh;Sualiha Afzal;Ming-Hui (Tim) Kao;Gerald Munch;Hans Wohlmuth;David Leach;Mitchell Low;Chun Guang Li
    • Biomolecules & Therapeutics
    • /
    • v.31 no.1
    • /
    • pp.27-39
    • /
    • 2023
  • Extensive research supported the therapeutic potential of curcumin, a naturally occurring compound, as a promising cytokine-suppressive anti-inflammatory drug. This study aimed to investigate the synergistic anti-inflammatory and anti-cytokine activities by combining 6-shogaol and 10-shogaol to curcumin, and associated mechanisms in modulating lipopolysaccharides and interferon-γ-induced proinflammatory signaling pathways. Our results showed that the combination of 6-shogaol-10-shogaolcurcumin synergistically reduced the production of nitric oxide, inducible nitric oxide synthase, tumor necrosis factor and interlukin-6 in lipopolysaccharides and interferon-γ-induced RAW 264.7 and THP-1 cells assessed by the combination index model. 6-shogaol-10-shogaol-curcumin also showed greater inhibition of cytokine profiling compared to that of 6-shogaol-10-shogaol or curcumin alone. The synergistic anti-inflammatory activity was associated with supressed NFκB translocation and downregulated TLR4-TRAF6-MAPK signaling pathway. In addition, SC also inhibited microRNA-155 expression which may be relevant to the inhibited NFκB translocation. Although 6-shogaol-10-shogaol-curcumin synergistically increased Nrf2 activity, the anti-inflammatory mechanism appeared to be independent from the induction of Nrf2. 6-shogaol-10-shogaol-curcumin provides a more potent therapeutic agent than curcumin alone in synergistically inhibiting lipopolysaccharides and interferon-γ induced proinflammatory mediators and cytokine array in macrophages. The action was mediated by the downregulation of TLR4/TRAF6/MAPK pathway and NFκB translocation.

Anti-inflammatory Activity of Complex Saponin Separated from Pueraria flos and Adzuki Beans Mixture Extract

  • Jung Hwan Nam;Jong Nam Lee;Su hyoung Park;Su Jeong Kim;Hwang Bae Sohn;Do Yeon Kim
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2022.09a
    • /
    • pp.90-90
    • /
    • 2022
  • Pueraria flos and Adzuki Beans contains several bioactive compounds, such as saponin, oleanolic acid, and flavone. Pueraria flos and Adzuki Beans has traditionally been used to treat disorders of antioxidant activity, diabetes and liver detoxication, and it has antinociceptive and anti-inflammatory properties. However, complex saponin were validity of the anti-inflammatory activity has not been scientifically investigated. In this study, to determine anti-inflammatory activity of complex saponin separated from Pueraria flos and Adzuki Beans mixture extract on nitric oxide and prostaglandinE2 assay. The anti-inflammatory activities of complex saponin separated from Pueraria flos and Adzuki Beans mixture extract were evaluated for inhibitory activities against lipopolysacchride induced nitric oxide and prostaglandinE2 production protein expressions in RAW264.7 cell lines. The complex saponin separated from Pueraria flos and Adzuki Beans mixture extract inhibitory activity for both tests with protein high depressions(%) values showed in the ranges of 50~100 ㎍/ml. Overall, prostaglandinE2 tests had a higher inhibitory effect on inflammation than nitricoxide tests. Theseis result suggest a potential role of complex saponin separated from Pueraria flos and Adzuki Beans mixture extract as source of anti-inflammation agent.

  • PDF

The anti-inflammatory effect of Achyranthes japonica on lipopolysaccharide-induced inflammatory activity in murine macrophages (LPS로 유도한 대식세포의 염증반응에서 우슬의 항염증 효과)

  • Kim, Min-Sun;Jeong, Jin-Soo;Lee, Hye-Youn;Ju, Young-Sung;Bae, Gi-Sang;Seo, Sang-Wan;Cho, Il-Joo;Park, Sung-Joo;Song, Ho-Joon
    • The Korea Journal of Herbology
    • /
    • v.26 no.2
    • /
    • pp.51-57
    • /
    • 2011
  • Objectives : Achyranthes japonica (AJ) has been used as an anti-bacterial and anti-inflammatory agent. However, it is unclear that AJ could show the anti-inflammatory effects in macrophages. In this experiment, we studied whether AJ could inhibit the inflammatory responses in macrophages. Methods : To measure out the cytotoxicity of AJ, we performed the MTT assay. We evaluated the nitric oxide (NO) production, and cytokine production such as interleukin (IL)-1b, IL-6 and tumor necrosis factor (TNF)-a. We also investigated the cellular mechanims such as mitogen activated protein kinases (MAPK)s and nuclear factor kappa B (NF-kB). Results : AJ inhibited lipopolysaccharide (LPS)-induced NO production. AJ also inhibited production levels of IL-1b, IL-6 and TNF-a in LPS-stimulated macrophage. Finally, western blot analysis showed that AJ treatment inhibited the activation of p38 but not of extracellular signal-regulated kinase, c-jun NH2-terminal kinase and NF-kB. Conclusions : These results showed that AJ down-regulated the inflammatory response via p38 in macrophages, which suggest that AJ could be a candidate on treating inflammatory diseases.

Effects of Haedokgumhwa-san Water Extracts on LPS-induced Inflammatory Response in Macrophage (해독금화산 물추출물이 LPS로 유도된 대식세포의 염증반응에 미치는 영향)

  • LIM, Jae-Soo;KANG, Ok-Hwa;SEO, Yun-Soo;KWON, Dong-Yeul
    • The Korea Journal of Herbology
    • /
    • v.30 no.5
    • /
    • pp.67-74
    • /
    • 2015
  • Objectives : TheHaedokgumhwa-sanwater extract (HDKHS) is used in Korea, Japan and China as a traditional therapeutic agent to cure an infectious disease. But its study is not enough. Therefore, the present study focused on the elucidation of HDKHS to investigate the anti-inflammatory effects and to established the possible mechanisms involved in its action on LPS-stimulated immune response in murine macrophages.Methods : Inflammatory status was induced by LPS and measured by increasement of inflammatory mediators. LPS induced secretions of NO and PGE2in RAW 264.7 cells were measured using griess reagent and enzyme-linked immunosorbent assay (ELISA) kit respectively. production of IL-6 was examined using ELISA kit and expression of IL-6 mRNA was measured by RT-PCR method. To investigate the effects of HDKHS on inflammatory mediators, such as iNOS, COX-2 and MAPKs, western blot and RT-PCR were performed.Results : HDKHS significantly reduced production of NO and PGE2 which were induced by LPS. Also, activation of IL-6 was reduced both protein and mRNA levels. The expressions of inflammatory mediator include iNOS and COX-2 were decreased by pretreatment with HDKHS. futhermore The result showed HDKHS down-regulate the LPS induced phosphorylation of ERK 1/2, one of the MAPK family, which is considered as a main regulator of transmission from pathogens to nucleus of immune cells.Conclusions : Our results suggest that the anti-inflammatory properties of HDKHS may stem from the inhibition of pro-inflammatory mediators via suppression of initiation of inflammatory response by inhibiting MAPKs signaling pathways.

The Anti-inflammatory Effect of Nypa fruticans Wurmb. Fruit on Lipopolysaccharide-induced Inflammatory response on RAW 264.7 cells (LPS로 유도한 염증반응에서 해죽순의 항염증 효과)

  • Bae, Gi-Sang;Park, Sung-Joo
    • The Korea Journal of Herbology
    • /
    • v.31 no.5
    • /
    • pp.79-84
    • /
    • 2016
  • Objective : Nypa fruticans Wurmb. Fruit (NF) has been used as a conventional medicine to treat inflammatory peridontal diseases in Myanmar and Eastern Asia. However, the anti-inflammatory effect of NF aqueous extract on lipopolysaccharide (LPS)-induced inflammatory responses was not well-investigated. Therefore, this study was aimed to investigate the anti-inflammatory effect of NF on LPS-induced inflammatory responses on RAW 264.7 cells.Methods : To induce inflammation on the macrophage cell line, RAW 264.7 cells were treated with 500 ng/mL of LPS. Water extracts of NF was treated 1 h prior to treatment of LPS. Cell viability was measured by MTT assay. Production of nitrite was measured with Griess assay and pro-inflammatory cytokines such as interleukine (IL)-1β and IL-6, and tumor necrosis factor (TNF)-α was measured by enzyme-linked immunosorbent assay (ELISA) and real-time polymerase chain reaction (PCR). In addition, we examined the inhibitory mechanisms of NF by western blot and immunocytochemistry.Result : Water Extract from NF itself did not have any cytotoxic effect at the concentration of 200 ㎍/ml in RAW 264.7 cells. Treatment of NF inhibited the production of nitrite, and pro-inflammatory cytokines inlcuding IL-1β, IL-6 and TNF-α in a dose dependant. In addition, NF treatment inhibited the LPS-induced activation and translocation of nuclear factor (NF)-κB.Conclusion : In summary, our result suggest that treatment of NF could reduce the LPS-induced inflammatory responses via deactivation of NF-κB. This study could suggest that NF could be a beneficial drug or agent to prevent inflammation.

Anti-inflammatory functions of purpurogallin in LPS-activated human endothelial cells

  • Kim, Tae-Hoon;Ku, Sae-Kwang;Lee, In-Chul;Bae, Jong-Sup
    • BMB Reports
    • /
    • v.45 no.3
    • /
    • pp.200-205
    • /
    • 2012
  • Enzymatic oxidation of commercially available pyrogallol was efficiently transformed to an oxidative product, purpurogallin. Purpurogallin plays an important role in inhibiting glutathione S-transferase, xanthine oxidase, catechol O-methyltransferase activities and is effective in the cell protection of several cell types. However, the anti-inflammatory functions of purpurogallin are not well studied. Here, we determined the effects of purpurogallin on lipopolysaccharide (LPS)-mediated proinflammatory responses. The results showed that purpurogallin inhibited LPS-mediated barrier hyper-permeability, monocyte adhesion and migration and such inhibitory effects were significantly correlated with the inhibitory functions of purpurogallin on LPS-mediated cell adhesion molecules (vascular cell adhesion molecules, intracellular cell adhesion molecule, E-selectin). Furthermore, LPS-mediated nuclear factor-${\kappa}B$ (NF-${\kappa}B$) and tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) releases from HUVECs were inhibited by purpurogallin. Given these results, purpurogallin showed its anti-inflammatory activities and could be a candidate as a therapeutic agent for various systemic inflammatory diseases.

Anti-inflammatory effect of SD-01 in RAW 264.7 cells (마우스대식세포주인 RAW 264.7에서 SD-01의 항염증 활성 연구)

  • Park, Sun-Dong
    • The Korea Journal of Herbology
    • /
    • v.25 no.3
    • /
    • pp.19-25
    • /
    • 2010
  • Objective : The aim of this study was to investigate anti-inflammatory activity of SD-01 methanol extract in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Methods : Cytotoxic activity of SD-01 methanol extract on RAW 264.7 cells was measured using 5-(3-caroboxymeth-oxyphenyl)-2H-tetra-zolium inner salt (MTS) assay. The nitric oxide (NO) production was measured by Griess reagent system. And proinflammatory cytokines and $PGE_2$ were measured by ELISA method. The levels of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), $I{\kappa}$-B-alpha and nuclear NF-${\kappa}$ B p65 expression were detected by western blot. Results : Our results indicated that methanol extract of SD-01 significantly inhibited the LPS-induced NO, $PGE_2$ production and iNOS, COX-2 expression accompanied by an attenuation of TNF-$\alpha$, IL-$1\beta$, IL-6 and MCP-1 production in RAW 264.7 cells. Moreover, methanol extract of SD-01 treatment also blocked LPS-induced NF-kB activation. Conclusion : These findings indicate that methanol extract of SD-01 inhibits the production of pro-inflammatory mediators and cytokines via suppression of NF-${\kappa}$ B activation. Take together, these results indicate that methanol extract of SD-01 has the potential for use as an agent of anti-chronic inflammatory diseases.

Anti-inflammatory Properties of Meso-dihydroguaiaretic Acid in Lipopolysaccharide-induced Macrophage

  • Kim, Yong-Jae;Kang, Yeo-Jin;Kim, Tack-Joong
    • Biomedical Science Letters
    • /
    • v.16 no.2
    • /
    • pp.91-95
    • /
    • 2010
  • Meso-dihydroguaiaretic acid (MDGA) is a medicinal herbal product isolated from the bark of Machilus thunbergii Sieb. et Zucc. (Lauraceae). It exhibits a neuroprotective effect and also exerts cytotoxicity to certain cancer cells. In the present study, we investigated whether or not MDGA inhibits inflammatory reaction through the inhibition of nitric oxide (NO) generation. The results showed that MDGA (5~$25 {\mu}M$) inhibited 100 ng/ml lipopolysaccharide (LPS)- induced NO generation in macrophage Raw 264.7 cells in a concentration-dependent manner. We also measured the cytotoxic effects of MDGA on Raw 264.7 cells and found no evidence of cytotoxicity. The inhibition of NO generation by MDGA was consistent with the inhibitory effect on the expression of inducible nitric oxide synthase (iNOS). In addition, MDGA inhibited the LPS-induced gene expression of $interleukin-1{\beta}$ $(IL-1{\beta})$ as well as tumor necrosis $factor-{\alpha}$ $(TNF-{\alpha})$. The present results may provide that MDGA has anti-inflammatory properties through inhibition of the toll-like receptors (TLRs) pathway, and suggest that MDGA can be used as an anti-inflammatory agent.

Suppression of Lipopolysaccharide-Induced Inflammatory and Oxidative Response by 5-Aminolevulinic Acid in RAW 264.7 Macrophages and Zebrafish Larvae

  • Ji, Seon Yeong;Cha, Hee-Jae;Molagoda, Ilandarage Menu Neelaka;Kim, Min Yeong;Kim, So Young;Hwangbo, Hyun;Lee, Hyesook;Kim, Gi-Young;Kim, Do-Hyung;Hyun, Jin Won;Kim, Heui-Soo;Kim, Suhkmann;Jin, Cheng-Yun;Choi, Yung Hyun
    • Biomolecules & Therapeutics
    • /
    • v.29 no.6
    • /
    • pp.685-696
    • /
    • 2021
  • In this study, we investigated the inhibitory effect of 5-aminolevulinic acid (ALA), a heme precursor, on inflammatory and oxidative stress activated by lipopolysaccharide (LPS) in RAW 264.7 macrophages by estimating nitric oxide (NO), prostaglandin E2 (PGE2), cytokines, and reactive oxygen species (ROS). We also evaluated the molecular mechanisms through analysis of the expression of their regulatory genes, and further evaluated the anti-inflammatory and antioxidant efficacy of ALA against LPS in the zebrafish model. Our results indicated that ALA treatment significantly attenuated the LPS-induced release of pro-inflammatory mediators including NO and PGE2, which was associated with decreased inducible NO synthase and cyclooxygenase-2 expression. ALA also inhibited the LPS-induced expression of pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6, reducing their extracellular secretion. Additionally, ALA abolished ROS generation, improved the mitochondrial mass, and enhanced the expression of heme oxygenase-1 (HO-1) and the activation of nuclear translocation of nuclear factor-E2-related factor 2 (Nrf2) in LPS-stimulated RAW 264.7 macrophages. However, zinc protoporphyrin, a specific inhibitor of HO-1, reversed the ALA-mediated inhibition of pro-inflammatory cytokines production and activation of mitochondrial function in LPS-treated RAW 264.7 macrophages. Furthermore, ALA significantly abolished the expression of LPS-induced pro-inflammatory mediators and cytokines, and showed strong protective effects against NO and ROS production in zebrafish larvae. In conclusion, our findings suggest that ALA exerts LPS-induced anti-inflammatory and antioxidant effects by upregulating the Nrf2/HO-1 signaling pathway, and that ALA can be a potential functional agent to prevent inflammatory and oxidative damage.