• Title/Summary/Keyword: Anti-fungal peptide

Search Result 6, Processing Time 0.024 seconds

Isolation and Purification of Novel Anti-Fungal Peptides from Hemolymph of Immunized Larvae of Housefly, Musca domestica (집파리유충 hemolymph 중신형의 anti-fungal peptides의 분리정제)

  • Gu Li-Juan;Wu Jian-Wei;Su Xiao-Qing;Sung Chang-Keun
    • Journal of Life Science
    • /
    • v.16 no.3 s.76
    • /
    • pp.387-395
    • /
    • 2006
  • To isolate and purify anti-fungal active substances from immunized housefly (Musca domestica), low dose of Candida albicans was injected into the larvae of the housefly to induce the appearance of potent anti-fungal active substances in the hemolymph. This purification work was performed by the routine isolation and purification processes of protein, namely, solid phase extraction (SPE), SDS-PACE electrophoresis, HPLC purification. Three 4-16 kDa peptides which exhibited antifungal activity against Candida albican and other fungi were isolated from induced hemolymph. Consequently, further anti-fungal activity study showed that these three peptides were different either in molecular weight or in anti-fungal activity. All isolated substances were proved to be active and resistant to high-temperature. It was deduced that these peptides isolated from induced housefly were novel members of the insect defensin family and they were inducible.

Suppression of green mold disease on oak mushroom cultivation by antifungal peptides (항진균성 펩티드에 의한 표고버섯 푸른곰팡이병의 억제)

  • Lee, Hyoung-Jin;Yun, Yeong-Bae;Huh, Jeong-Hoon;Kim, Young-Kee
    • Journal of Applied Biological Chemistry
    • /
    • v.60 no.2
    • /
    • pp.149-153
    • /
    • 2017
  • Contamination and growth of Trichoderma, a green mold, on the oak log and wooden chip or sawdust media can severely inhibit the growth of oak mushroom. Chemicals including pesticides and antibiotics are generally not allowed for the control of green mold disease during mushroom cultivation. In this study, bacterial pathogens causing blotch disease on the oyster mushrooms were isolated and their peptide toxins were purified for the control of green mold disease. Strains of Pseudomonas tolaasii secret various peptide toxins, tolaasin and its structural analogues, having antifungal activities. These peptides have shown no effects on the growth of oak mushrooms. When the peptide toxins were applied to the green mold, Trichoderma harzianum H1, they inhibited the growth of green molds. Among the 20 strains of peptide-forming P. tolaasii, strong, moderate, and weak antifungal activities were measured from 8, 5, and 7 strains, respectively. During oak mushroom cultivation, bacterial culture supernatants containing the peptide toxins were sprayed on the aerial mycelia of green molds grown on the surface of sawdust media. The culture supernatants were able to suppress the fungal growth of green molds while no effect was observed on the mushroom growth and production. They changed the color of molds from white aerial mycelium into yellowish dried scab, representing the powerful anti-fungal and sterilization activities of peptide toxins.

Effect of Antimicrobial Peptide from Coptidis Rhizoma on Candida albicans Infection (황련 유래 Antimicrobial Peptide의 Candida albicans 감염 억제효과)

  • Lee, Jue-Hee
    • YAKHAK HOEJI
    • /
    • v.55 no.3
    • /
    • pp.227-233
    • /
    • 2011
  • We previously reported the protein isolated from Coptidis Rhizoma (CRP), which has antifungal activity against a fungal pathogen, Candida albicans. In the current study, we investigated what portion in the CRP is responsible for the antifungal activity. For the investigation, the CRP was fractionated on a Shepadex G-50 column. Data resulting from the fractionation, seven fractions were obtained. Fractions (Fr.) I, II, and III eluted initially from the column showed no inhibitory effect on the growth of C. albicans, whereas Fr. IV, V, and VI eluted later revealed inhibition of the growth, and Fr. IV and VI showed potent antifungal activity by broth susceptibility analysis. However, Fr. VI was contained in the CRP more than Fr. IV, which led us to select the VI for the following experiments. In a murine model of a subcutaneous candidiasis caused by C. albicans, the Fr. VI displayed a therapeutic effect on nude mice pretreated with anti-neutrophil monoclonal antibody (RB68C5) and then infected subcutaneously with live C. albicans. At day 16, these mice were healed almost up to 78% of the infected area when compared to infected area of control nude mice that received diluent (Dulbecco's Phosphate-Buffered Saline; DPBS), instead of the Fr. VI (P<0.01). The Fr. VI blocked hyphal formation from blastoconidial form of C. albicans (P<0.01), which might prevent penetration of hyphae to the deeper site of skin and thus helps the healing. In the ionic strength test, the effect of Fr. was influenced by $Ca^{2+}$ ion just like other known antimicrobial peptides, but the influence was affected at an extremely high concentration such as 500 mM. Thus, such ion-concentration is considered to be meaningless in the clinical situation. Considering all data together, Coptidis Rhizoma is appeared to produce an antimicrobial peptide that has therapeutic effect on subcutaneous infection caused by C. albicans.

Positive and negative regulation of the Drosophila immune response

  • Aggarwal, Kamna;Silverman, Neal
    • BMB Reports
    • /
    • v.41 no.4
    • /
    • pp.267-277
    • /
    • 2008
  • Insects mount a robust innate immune response against a wide array of microbial pathogens. The hallmark of the Drosophila humoral immune response is the rapid production of anti-microbial peptides in the fat body and their release into the circulation. Two recognition and signaling cascades regulate expression of these antimicrobial peptide genes. The Toll pathway is activated by fungal and many Gram-positive bacterial infections, whereas the immune deficiency (IMD) pathway responds to Gram-negative bacteria. Recent work has shown that the intensity and duration of the Drosophila immune response is tightly regulated. As in mammals, hyperactivated immune responses are detrimental, and the proper down-modulation of immunity is critical for protective immunity and health. In order to keep the immune response properly modulated, the Toll and IMD pathways are controlled at multiple levels by a series of negative regulators. In this review, we focus on recent advances identifying and characterizing the negative regulators of these pathways.

A Genome-Wide Analysis of Antibiotic Producing Genes in Streptomyces globisporus SP6C4

  • Kim, Da-Ran;Kwak, Youn-Sig
    • The Plant Pathology Journal
    • /
    • v.37 no.4
    • /
    • pp.389-395
    • /
    • 2021
  • Soil is the major source of plant-associated microbes. Several fungal and bacterial species live within plant tissues. Actinomycetes are well known for producing a variety of antibiotics, and they contribute to improving plant health. In our previous report, Streptomyces globisporus SP6C4 colonized plant tissues and was able to move to other tissues from the initially colonized ones. This strain has excellent antifungal and antibacterial activities and provides a suppressive effect upon various plant diseases. Here, we report the genome-wide analysis of antibiotic producing genes in S. globisporus SP6C4. A total of 15 secondary metabolite biosynthetic gene clusters were predicted using antiSMASH. We used the CRISPR/Cas9 mutagenesis system, and each biosynthetic gene was predicted via protein basic local alignment search tool (BLAST) and rapid annotation using subsystems technology (RAST) server. Three gene clusters were shown to exhibit antifungal or antibacterial activity, viz. cluster 16 (lasso peptide), cluster 17 (thiopeptide-lantipeptide), and cluster 20 (lantipeptide). The results of the current study showed that SP6C4 has a variety of antimicrobial activities, and this strain is beneficial in agriculture.

Evolutionary Explanation for Beauveria bassiana Being a Potent Biological Control Agent Against Agricultural Pests

  • Han, Jae-Gu
    • 한국균학회소식:학술대회논문집
    • /
    • 2014.05a
    • /
    • pp.27-28
    • /
    • 2014
  • Beauveria bassiana (Cordycipitaceae, Hypocreales, Ascomycota) is an anamorphic fungus having a potential to be used as a biological control agent because it parasitizes a wide range of arthropod hosts including termites, aphids, beetles and many other insects. A number of bioactive secondary metabolites (SMs) have been isolated from B. bassiana and functionally verified. Among them, beauvericin and bassianolide are cyclic depsipeptides with antibiotic and insecticidal effects belonging to the enniatin family. Non-ribosomal peptide synthetases (NRPSs) play a crucial role in the synthesis of these secondary metabolites. NRPSs are modularly organized multienzyme complexes in which each module is responsible for the elongation of proteinogenic and non-protein amino acids, as well as carboxyl and hydroxyacids. A minimum of three domains are necessary for one NRPS elongation module: an adenylation (A) domain for substrate recognition and activation; a tholation (T) domain that tethers the growing peptide chain and the incoming aminoacyl unit; and a condensation (C) domain to catalyze peptide bond formation. Some of the optional domains include epimerization (E), heterocyclization (Cy) and oxidation (Ox) domains, which may modify the enzyme-bound precursors or intermediates. In the present study, we analyzed genomes of B. bassiana and its allied species in Hypocreales to verify the distribution of NRPS-encoding genes involving biosynthesis of beauvericin and bassianolide, and to unveil the evolutionary processes of the gene clusters. Initially, we retrieved completely or partially assembled genomic sequences of fungal species belonging to Hypocreales from public databases. SM biosynthesizing genes were predicted from the selected genomes using antiSMASH program. Adenylation (A) domains were extracted from the predicted NRPS, NRPS-like and NRPS-PKS hybrid genes, and used them to construct a phylogenetic tree. Based on the preliminary results of SM biosynthetic gene prediction in B. bassiana, we analyzed the conserved gene orders of beauvericin and bassianolide biosynthetic gene clusters among the hypocrealean fungi. Reciprocal best blast hit (RBH) approach was performed to identify the regions orthologous to the biosynthetic gene cluster in the selected fungal genomes. A clear recombination pattern was recognized in the inferred A-domain tree in which A-domains in the 1st and 2nd modules of beauvericin and bassianolide synthetases were grouped in CYCLO and EAS clades, respectively, suggesting that two modules of each synthetase have evolved independently. In addition, inferred topologies were congruent with the species phylogeny of Cordycipitaceae, indicating that the gene fusion event have occurred before the species divergence. Beauvericin and bassianolide synthetases turned out to possess identical domain organization as C-A-T-C-A-NM-T-T-C. We also predicted precursors of beauvericin and bassianolide synthetases based on the extracted signature residues in A-domain core motifs. The result showed that the A-domains in the 1st module of both synthetases select D-2-hydroxyisovalerate (D-Hiv), while A-domains in the 2nd modules specifically activate L-phenylalanine (Phe) in beauvericin synthetase and leucine (Leu) in bassianolide synthetase. antiSMASH ver. 2.0 predicted 15 genes in the beauvericin biosynthetic gene cluster of the B. bassiana genome dispersed across a total length of approximately 50kb. The beauvericin biosynthetic gene cluster contains beauvericin synthetase as well as kivr gene encoding NADPH-dependent ketoisovalerate reductase which is necessary to convert 2-ketoisovalarate to D-Hiv and a gene encoding a putative Gal4-like transcriptional regulator. Our syntenic comparison showed that species in Cordycipitaceae have almost conserved beauvericin biosynthetic gene cluster although the gene order and direction were sometimes variable. It is intriguing that there is no region orthologous to beauvericin synthetase gene in Cordyceps militaris genome. It is likely that beauvericin synthetase was present in common ancestor of Cordycipitaceae but selective gene loss has occurred in several species including C. militaris. Putative bassianolide biosynthetic gene cluster consisted of 16 genes including bassianolide synthetase, cytochrome P450 monooxygenase, and putative Gal4-like transcriptional regulator genes. Our synteny analysis found that only B. bassiana possessed a bassianolide synthetase gene among the studied fungi. This result is consistent with the groupings in A-domain tree in which bassianolide synthetase gene found in B. bassiana was not grouped with NRPS genes predicted in other species. We hypothesized that bassianolide biosynthesizing cluster genes in B. bassiana are possibly acquired by horizontal gene transfer (HGT) from distantly related fungi. The present study showed that B. bassiana is the only species capable of producing both beauvericin and bassianolide. This property led to B. bassiana infect multiple hosts and to be a potential biological control agent against agricultural pests.

  • PDF