• Title/Summary/Keyword: Anti-cancer properties

Search Result 394, Processing Time 0.026 seconds

Protective effect of lycopene against cytokine-induced β-cell apoptosis in INS-1 cells (라이코펜이 사이토카인에 의해 유도된 베타세포 사멸에 미치는 효과 및 기전 연구)

  • Kim, Kyong;Jang, Se-Eun;Bae, Gong Deuk;Jun, Hee-Sook;Oh, Yoon Sin
    • Journal of Nutrition and Health
    • /
    • v.51 no.6
    • /
    • pp.498-506
    • /
    • 2018
  • Purpose: Lycopene, a carotenoid with anti-oxidant properties, occurs naturally in tomatoes and pink grapefruit. Although the beneficial effects of lycopene on various disorders have been established, little attention has been paid to the possible anti-diabetic effects of lycopene focusing on ${\beta}$-cells. Therefore, this study investigated the potential of lycopene to protect ${\beta}$-cells against apoptosis induced by a cytokine mixture. Methods: For toxicity experiments, the cells were treated with 0.1 ~ 10 nM of lycopene, and the cell viability in INS-1 cells (a rat ${\beta}$-cell line) was measured using a MTT assay. To induce cytokine toxicity, the cells were treated with a cytokine mixture (20 ng/mL of $TNF{\alpha}$ + 20 ng/mL of IL-$1{\beta}$) for 24 h, and the effects of lycopene (0.1 nM) on the cytokine toxicity were measured using the MTT assay. The expression levels of the apoptotic proteins were analyzed by Western blotting, and the level of intracellular reactive oxidative stress (ROS) was monitored using a DCFDA fluorescent probe. The intracellular ATP levels were determined using a luminescence kit, and mRNA expression of the genes coding for anti-oxidative stress response and mitochondrial function were analyzed by quantitative reverse-transcriptase PCR. Results: Exposure of INS-1 cells to 0.1 nM of lycopene increased the cell viability significantly, and protected the cells from cytokine-induced death. Lycopene upregulated the mRNA and protein expression of B-cell lymphoma-2 (Bcl-2) and reduced the expression of the Bcl-2 associated X (Bax) protein. Lycopene inhibited apoptotic signaling via a reduction of the ROS, and this effect correlated with the upregulation of anti-oxidative stress response genes, such as GCLC, NQO1, and HO-1. Lycopene increased the mRNA expression of mitochondrial function-related genes and increased the cellular ATP level. Conclusion: These results suggest that lycopene reduces the level of oxidative stress and improves the mitochondrial function, contributing to the prevention of cytokine-induced ${\beta}$-cell apoptosis. Therefore, lycopene could potentially serve as a preventive and therapeutic agent for the treatment of type 2 diabetes.

Effects of Mifepristone and Tamoxifen on Calcium Modulation in DU-145 Prostate Cancer Cells (DU-145 전립선 암세포에 있어서 mifepristone과 tamoxifen이 칼슘조절에 미치는 영향)

  • Kim, Yeo-Reum;Kim, Byeong-Gee
    • Journal of Life Science
    • /
    • v.20 no.9
    • /
    • pp.1324-1331
    • /
    • 2010
  • Mifepristone (MIF) and Tamoxifen (TAM) have been used in the treatment of prostate cancer and breast cancer for more than a decade. MIF can induce apoptosis in both AR-positive and negative prostate cancer cells. Because of its pleiotropic ligand-receptor properties, TAM exerts cytotoxic activity in estrogen (ER)-positive and various ER.negative cancer cells. However, the molecular mechanisms of these two substances are not yet clear. In the present work, we report that the cytotoxic effects of MIF and TAM are due to the modulation of intracellular $Ca^{2+}$ level in DU-145, androgen-insensitive cells. When the cells were treated with micromolar concentrations of either MIF or TAM, the growth and viability were significantly decreased in a dose- and time-dependent manner. The apoptosis induced by MIF or TAM was further proved and analyzed by confocal laser scanning microscopy (CLSM) and fluorescence-activated cell sorting (FACS). In the cells cultivated in a normal 1.5 mM $Ca^{2+}$ medium, both MIF and TAM also induced an increase of the intracellular $Ca^{2+}$ level in a dose-dependent fashion. Since a change in calcium level could not be found in cells of the $Ca^{2+}$-free medium, the increase of intracellular $Ca^{2+}$ level might be due to an increase in extracellular calcium uptake. Our results show that the apoptotic effect was more prominent in TAM treatment compared to MIF treatment in DU-145 cells. The above findings might be due to the difference in the uppermost pathways of apoptosis induced by either MIF or TAM. When we checked the level of procaspase-8 activation, TAM showed minor level of activation, as opposed to MIF, which exerted strong activation. In both treatments, the levels of anti-apoptotic protein Bcl-2 decreased, and pro-apoptotic protein Bax level increased more than 2-fold. The activation of caspase-3, a key protease enzyme in the downstream pathway of apoptosis, was much higher in the cells treated with TAM, compared to the MIF treatment. The overall apoptotic activity shown in the present work was closely related to intracellular $Ca^{2+}$ concentration levels. Therefore, the cytotoxic activity induced by MIF and TAM might have been due to intracellular calcium modulation.

Secondary Metabolites with Anti-complementary Activity from the Stem Barks of Juglans mandshurica Maxim

  • Li, Zi-Jiang;Chen, Shilin;Yang, Xiang-Hao;Wang, Rui;Min, Hee-Jeong;Wu, Lei;Si, Chuan-Ling;Bae, Young-Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.2
    • /
    • pp.118-124
    • /
    • 2018
  • Juglans mandshurica is a fast growing hard species, which is a tree in family of Juglandaceae and has a wide distribution in China, Korea and eastern Russia. Plant materials from J. mandshurica have extensively been used in folk medicines to prevent or cure gastric, esophageal, lung and cardiac cancer. As one chain of our searching for anticomplementary agents from natural sources, two epimeric ellagitannins, [2,3-O-4,4',5,5',6,6',-hexahydroxydiphenoyl (HHDP))-(${\alpha},{\beta}$)-D-glucose] (I) and pedunculagin (II) were purified from 70% acetone extracts of the stem barks of J. mandshurica by Thin Layer Chromatography and Sephadex LH-20 column chromatography approaches. The chemical structures of the isolated compounds were characterized by MS, NMR, and a careful comparation with published literatures. The epimeric ellagitannins I and II exhibited inhibitory properties against a classical pathway of complementary system with 50 % inhibitory concentrations ($IC_{50}$) values of 65.3 and $47.7{\mu}M$, respectively, comparing with riliroside ($IC_{50}=104{\mu}M$) and rosmarinic acid ($IC_{50}=182{\mu}M$), which were used as positive controls. Thus, the work indicated both the two secondary metabolites possess excellent inhibitory activity and might be developed as potential anticomplementary chemicals.

Recent Trends in New Functional Foods using Pomegranate Fruit Peel (석류 과일 껍질을 활용하는 새로운 기능성 식품의 최근 연구 동향)

  • kim, Sung-Kih
    • The Korean Journal of Food And Nutrition
    • /
    • v.30 no.2
    • /
    • pp.181-190
    • /
    • 2017
  • Functional foods are of great significance since our society is accelerating into aging. An aging society has many physiological metabolic diseases such as hypertension, diabetes, heart disease, cancer, dementia and geriatric diseases. Fundamental treatments for the elderly are almost impossible and the social burden is heavy. If these diseases can be prevented or alleviated by improving dietary habits using functional foods, the significance would be very large. Pomegranate has been found to have 124 different kinds of phytochemicals. Polyphenols have a wide range of protective effects including various physiological metabolic diseases and cancers. It is necessary to develop functional foods such as preservatives and food extenders which can contribute to food safety, required in the food industry, by using such bioactive substances. Pomegranates have been reported to decrease the impact of many serious illnesses. There is a considerable amount of bioactive substances in the peel of a pomegranate, which has potent anticancer, antioxidant, antimicrobial and anti-apoptotic properties. Unfortunately, the peel is typically discarded after processing. Despite knowledge regarding the bioactive substances in the pomegranate peel and peel extracts, including their functionality and diversity, the knowledge is not well known by consumers in general. The aim of this study was to review up to date research trends for processing and developing new functional foods by utilizing nutritional functional substances, favourite food materials, and materials for processing food contained in pomegranate peels and pomegranate peel extracts. This study will summarize the data found in pomegranate peel and pomegranate peel extract literature mainly recently published in Science Direct. There are polyphenolic compounds (ellagitannins, punicalagin, proanthocyanidin, flavonoids, polysaccharides, etc.) in the fruit peel, making up about 50% of the pomegranate's weight. The polyphenol content of a pomegranate fruit peel is 149.91 mg/g, which is about 100 times higher than the juice. Paying attention to the fact that the ellagitannin content (14.22 mg/g) in the fruit peel is also twice as high as that of the fruit juice and seeds, that confirms the possibility of utilizing the peel as a food ingredient capable of developing new, functional bioactive foods.

Synthesis and Properties of 5-Aminosalicyl-taurine as a Colon-specific Prodrug of 5-Aminosalicylic Acid

  • Jung, Yun-Jin;Kim, Hak-Hyun;Kong, Hye-Sik;Kim, Young-Mi
    • Archives of Pharmacal Research
    • /
    • v.26 no.4
    • /
    • pp.264-269
    • /
    • 2003
  • 5-Aminosalicylic acid (5-ASA) is an active ingredient of therapeutic agents used for Crohn s disease and ulcerative colitis. Because it is absorbed rapidly and extensively in the upper intestine, delivery of the agent specifically to the colon is necessary. We selected taurine as a colon-specific promoiety and designed 5-aminosalicyltaurine (5-ASA-Tau) as a new colon-specific prodrug of 5-aminosalicylic acid (5-ASA). It was expected that introduction of taurine would restrict the absorption of the prodrug and show additive effect to the anti-inflammatory action of 5-ASA after hydrolysis. 5-ASA-Tau was prepared in good yield by a simple synthetic route. The apparent partition coefficient of 5-ASA-Tau in 1-octanol/pH 6.8 phosphate buffer or $CHCl_3$/pH 6.8 phosphate buffer was 0.10 or 0.18, respectively, at $37^{\circ}C$. To determine the chemical and biochemical stability in the upper intestinal environment, 5-ASA-Tau was incubated in pH 1.2 and 6.8 buffer solutions, and with the homogenates of tissue and contents of stomach or small intestine of rats at $37^{\circ}C$. 5-ASA was not detected from any of the incubation medium with no change in the concentration of 5-ASA-Tau. On incubation of 5-ASA-Tau with the cecal and colonic contents of rats, the fraction of the dose released as 5-ASA was 45% and 20%, respectively, in 8 h. Considering low partition coefficient and stability in the upper intestine, 5-ASA-Tau might be nonabsorbable and stable in the upper intestine. After oral administration, it would be delivered to the colon in intact form and release 5-ASA and taurine. These results suggested 5-ASA-Tau as a promising colon-specific prodrug of 5-ASA.

P53 transcription-independent activity mediates selenite-induced acute promyelocytic leukemia NB4 cell apoptosis

  • Guan, Liying;Huang, Fang;Li, Zhushi;Han, Bingshe;Jiang, Qian;Ren, Yun;Yang, Yang;Xu, Caimin
    • BMB Reports
    • /
    • v.41 no.10
    • /
    • pp.745-750
    • /
    • 2008
  • Selenium, an essential trace element possessing anti-carcinogenic properties, can induce apoptosis in cancer cells. We have previously shown that sodium selenite can induce apoptosis by activating the mitochondrial apoptosis pathway in NB4 cells. However, the detailed mechanism remains unclear. Presently, we demonstrate that p53 contributes to apoptosis by directing signaling at the mitochondria. Immunofluorescent and Western blot procedures revealed selenite-induced p53 translocation to mitochondria. Inhibition of p53 blocked accumulation of reactive oxygen species (ROS) and loss of mitochondrial membrane potential, suggesting that mitochondrial p53 acts as an upstream signal of ROS and activates the mitochondrial apoptosis pathway. Selenite also disrupted cellular calcium ion homeostasis in a ROS-dependent manner and increased mitochondrial calcium ion concentration. p38 kinase mediated phosphorylation and mitochondrial translocation of p53. Taken together, these results indicate that p53 involves selenite-induced NB4 cell apoptosis by translocation to mitochondria and activation mitochondrial apoptosis pathway in a transcription-independent manner.

Ishige okamurae reduces blood glucose levels in high-fat diet mice and improves glucose metabolism in the skeletal muscle and pancreas

  • Yang, Hye-Won;Son, Myeongjoo;Choi, Junwon;Oh, Seyeon;Jeon, You-Jin;Byun, Kyunghee;Ryu, Bo Mi
    • Fisheries and Aquatic Sciences
    • /
    • v.23 no.9
    • /
    • pp.24.1-24.9
    • /
    • 2020
  • Brown alga (Ishige okamurae; IO) dietary supplements have been reported to possess anti-diabetic properties. However, the effects of IO supplements have not been evaluated on glucose metabolism in the pancreas and skeletal muscle. C57BL/6 N male mice (age, 7 weeks) were arranged in five groups: a chow diet with 0.9% saline (NFD/saline group), high-fat diet (HFD) with 0.9% saline (HFD/saline group). high-fat diet with 25 mg/kg IO extract (HFD/25/IOE). high-fat diet with 50 mg/kg IO extract (HFD/50/IOE), and high-fat diet with 75 mg/kg IO extract (HFD/75/IOE). After 4 weeks, the plasma, pancreas, and skeletal muscle samples were collected for biochemical analyses. IOE significantly ameliorated glucose tolerance impairment and fasting and 2 h blood glucose level in HFD mice. IOE also stimulated the protein expressions of the glucose transporters (GLUTs) including GLUT2 and GLUT4 and those of their related transcription factors in the pancreases and skeletal muscles of HFD mice, enhanced glucose metabolism, and regulated blood glucose level. Our results suggest Ishige okamurae extract may reduce blood glucose levels by improving glucose metabolism in the pancreas and skeletal muscle in HFD-induced diabetes.

CDST, a Derivative of Tetrahydroisoquinoline, Induced Apoptosis in HL-60 Cells through Activation of Caspase-8, Bid Cleavage and Cytochrome c Release

  • Ju, Sung-Min;Kim, Kun-Jung;Lee, Jong-Gil;Lee, Chai-Ho;Han, Dong-Min;Yun, Young-Gab;Hong, Gi-Yun;An, Won-Gun;Jeon, Byung-Hun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.3
    • /
    • pp.802-810
    • /
    • 2005
  • The tetrahydroisoquinolines included potent cytotoxic agents that showed antitumor activity,antimicrobial activity, and other biological properties. We studied the effect of CDST, 1-Chloromethyl-6,7-dimethoxy-3,4-dihydro-1H-isoquinoline-2-sulfonic acid amide, a newly synthesized anti-cancer agent. The cytotoxic activity of CDST in HL-60 cells was increased in a dose-dependent manner. CDST, tetrahydroisoquinolines derivative, was cytotoxic to HL-60 cells, with IC50 of $80{\mu}g/ml$. Treatment of CDST to HL-60 cells showed the fragmentation of DNA in a dose- and time dependent manner, suggesting that thesecells underwent apoptosis. Treatment of HL-60 cells with CDST was induced in a dose- and time-dependent activation of caspase-3, caspase-8 and proteolytic cleavage of poly(ADP-ribose) polymerase. In caspase activity assay, caspase-3 and -8 was activated after 12 h and 6 h posttreatment, respectively. CDST also caused the release of cytochrome c from mitochondria into the cytosol. CDST-induced cytochrome c release was mediated by caspase-8-dependent cleavage of Bid and Bax translocation. These results suggest that caspase-8 induced Bid cleavage and Bax translocation, caused mitochondrial cytochrome c release, and induce caspase-3 activationduring CDST-induced apoptosis in HL-60 cells.

Influence of Extraction Method on Quality and Functionality of Broccoli Juice

  • Lee, Sung Gyu;Kim, Jin-Hee;Son, Min-Jung;Lee, Eun-Ju;Park, Woo-Dong;Kim, Jong-Boo;Lee, Sam-Pin;Lee, In-Seon
    • Preventive Nutrition and Food Science
    • /
    • v.18 no.2
    • /
    • pp.133-138
    • /
    • 2013
  • This study was performed to compare the quality and functionality of broccoli juice as affected by extraction method. Broccoli juice was extracted using method I (NUC Kuvings silent juicer), method II (NUC centrifugal juicer), and method III (NUC mixer), and the quality properties of the broccoli juices were analyzed using three different methods. Additionally, the antioxidative, anticancer, and anti-hyperglycemic activities of broccoli juice prepared by the three different methods were investigated in vitro. The broccoli juice made by method I contained the highest polyphenol and flavonoid contents at 1,226.24 mg/L and 1,018.32 mg/L, respectively. Particularly, broccoli juice prepared by method I showed higher DPPH and ABTS radical scavenging activities than those of the other samples. Additionally, broccoli juice made by method I showed the highest growth inhibitory effects against HeLa, A549, AGS, and HT-29 cancer cells. Broccoli juice prepared by method I had the highest ${\alpha}$-glucosidase inhibitory effects. These results indicate that there are important differences in chemical and functional qualities between juice extraction techniques.

The effect of pretreated Lithospermum erythrorhizon derived-naphthoquinone on anxiety, depression in mice (지치 유래 naphthoquinone을 전처치한 생쥐에서 우울 및 불안 조절 효과)

  • Je, Hyun Dong;Min, Young Sil
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.7
    • /
    • pp.116-121
    • /
    • 2020
  • This study was undertaken to investigate the influence and related mechanisms that have yet to be clearly demonstrated of Lithospermum erythrorhizon derived-naphthoquinone (shikonin) on the anxiety, insomnia, depression in rats. We hypothesized that naphthoquinone, the primary ingredient of Lithospermum erythrorhizon, plays a role in the modulation of insomnia evoked by stress, depression evoked by forced swimming or anxiety evoked by elevated plus maze. Male ICR (Institute of Cancer Research) mice were used and the immobility or swimming time, the duration of sleep, the duration and entry frequency into open arms were measured and recorded. The administration of naphthoquinone (10, 30 and 100 mg/kg) potentiated barbiturate-induced sleep suggesting the activation of GABAA receptor. It also potentiated the time spent in open arms of the maze and decreased the immobility time in forced swimming. In conclusion, naphthoquinone has anxiolytic, hypnotic and anti-depressant properties and is a potential therapeutic for anxiety, insomnia and depression.