• Title/Summary/Keyword: Anti-cancer properties

Search Result 394, Processing Time 0.022 seconds

Anti-proliferative Properties of p-Coumaric Acid in SNU-16 Gastric Cancer Cells (SNU-16 위암 세포주에서 p-coumaric acid의 세포성장 억제 효과)

  • Jang, Mi Gyeong;Ko, Hee Chul;Kim, Se-Jae
    • Journal of Life Science
    • /
    • v.29 no.7
    • /
    • pp.809-816
    • /
    • 2019
  • The ubiquitous plant metabolite p-coumaric acid (p-CA) has antioxidant and anti-inflammatory properties, but its anti-cancer activity has not been established in gastric cancer cell lines. In this study, we investigated the effects of p-CA on the proliferation and transcriptome profile of SNU16 gastric cancer cells. Treatment with p-CA induced apoptosis of the SNU-16 cells by regulating the expression of pro-apoptotic and anti-apoptotic proteins, such as Bcl-2, poly (ADP-ribose) polymerase (PARP), Bax, procaspase-3, and cleaved-caspase-3. The genes differentially expressed in response to p-CA treatment of the SNU-16 cells were identified by RNA sequencing analysis. Genes regulated by p-CA were involved mainly in the inflammatory response, apoptotic processes, cell cycle, and immune response. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that the phosphatidylinositol-3-kinase-Akt and cancer signaling pathways were altered by p-CA. Protein-protein interaction (PPI) network analysis also revealed that p-CA treatment was correlated with differential expression of genes associated with the inflammatory response and cancer. Collectively, these results suggest that p-CA has potential utility in gastric cancer prevention.

Anti-Proliferative Activity and Apoptosis Induction of an Ethanolic Extract of Boesenbergia pandurata (Roxb.) Schlecht. against HeLa and Vero Cell Lines

  • Listyawati, Shanti;Sismindari, Sismindari;Mubarika, Sofia;Murti, Yosi Bayu;Ikawati, Muthi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.1
    • /
    • pp.183-187
    • /
    • 2016
  • Rhizomes of Boesenbergia pandurata (Roxb.) Schlecht have been reported to contain active compounds with anticancer properties. This research was carried out to examine anti-proliferative and apoptotic induction against HeLa and Vero cells-line. Dried powder of B. pandurata rhizomes was extracted by a maceration method using 90% ethanol. Cytotoxic assays to determine $IC_{50}$ and anti-proliferative effects were carried out by MTT methods. Observation of apoptosis was achieved with double staining using acridine orange and ethidium bromide. The results showed that ethanolic extract of B. pandurata was more cytotoxic against HeLa cells ($IC_{50}$ of $60{\mu}g/mL$) than Vero cells ($IC_{50}$ of $125{\mu}g/mL$). The extract had higher anti-proliferative activity as well as apoptotic induction in HeLa than Vero cells. Therefore, it was concluded that the ethanolic extract of B. pandurata had anti-proliferative as well as apoptosis induction activity dependent on the cell type.

Quantitative Analysis of Cyanidin-3-Glucoside from Purple-Colored Crops (유색작물의 Cyanidin-3-Glucoside 최적 추출분석)

  • Kim, Eun-Shil;Shin, Jin-Chul;Chung, Ha-Sook
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.spc1
    • /
    • pp.103-106
    • /
    • 2006
  • Anthocyanins are water-soluble glycosides and acylglycosides of anthocyanidins, having different color variations due to its substitution patterns. Anthocyanins, present in various fruits, vegetables and crops as natural colorant, have been well characterized for its bioactive properties, anti-oxidant, anti-cancer, anti-proliferative and anti-inflammatory properties. During extraction and purification, the factors, such as pH, temperature, oxygen, light, enzymes, nucleophilic agents, sugar derivatives and co-pigments, have affected on anthocyanin stability. For this reason, the extraction method should be thoroughly checked for the qualitative/quantitative analysis of anthocyanin in particular plant material. To identify the optimum extraction method of cyanidin-3-glucoside, major anthocyanin of dark purple-colored grains, Oryza sativa cv. Heugjinjubyeo, Phaselous vulgaris, Phynchosia gngularis, Sesamum indium, Rhynchosia nulubilis and Lablab purpureus, reversed-phase HPLC analysis using solvent system of acetonitrile, methanol and water were accomplished.

Effects of Trichosanthes kirilowii Extract against Angiogenesis and Various Tumor Cells' Growth (천화분 추출물이 혈관신생 및 암세포성장에 미치는 영향)

  • Kim, Dong-Woo;Lee, Jong-Hoon;Yoo, Hwa-Seung;Cho, Jung-Hyo;Lee, Yeon-Weol;Son, Chang-Gue;Cho, Chong-Kwan
    • The Journal of Internal Korean Medicine
    • /
    • v.29 no.2
    • /
    • pp.490-499
    • /
    • 2008
  • Objectives : This study was aimed to elucidate the effects of Trichosanthes kirilowii extract (TKE) on the angiogenesis and growth of tumor cells. Methods : Tube formation assay was performed by using human umbilical vein endothelial cells (HUVEC), and anchorage dependent colony assay was performed by using B16-F10 melanoma, Hep G2 and HT1080, CT-26 and SNU-1 cells. Results : For HUVEC, TKE at a level of more than 100 ${\mu}g/m{\ell}$ suppresses cell growth. For HUVEC at 100 ${\mu}g/m{\ell}$ and greater TKE density, the formation of tubes was suppressed in a dose-dependant manner. TKE controls the colony formations of B16-F10 melanoma cells, CT 26 cells, and Hep G2 cells, and its effect is proportional to density. In HT1080 cells and SNU-1 cells, formation is suppressed regardless of density. Conclusions : From these results, it could be concluded that TKE has significant properties on anti-angiogenesis and growth inhibiting of tumor cells. It is suggested that TKE will be a good candidate for new drugs or therapeutics for anti-angiogenesis.

  • PDF

Anti-cancer Activity of Anthricin through Caspase-dependent Apoptosis in Human Hypopharyngeal Squamous Carcinoma Cell

  • Kim, Won Gi;Lee, Seul Ah;Moon, Sung Min;Kim, Jin-Soo;Kim, Su-Gwan;Shin, Yong Kook;Kim, Do Kyung;Kim, Chun Sung
    • International Journal of Oral Biology
    • /
    • v.41 no.4
    • /
    • pp.183-190
    • /
    • 2016
  • Anthricin (Deoxypodophyllotoxin), a naturally occurring flavolignan, has well known anti-cancer properties in several cancer cells, such as prostate cancer, cervical carcinoma and pancreatic cancer. However, the effects of Anthricin are currently unknown in oral cancer. We examined the anticancer effect and mechanism of action of Anthricin in human FaDu hypopharyngeal squamous carcinoma cells. Our data showed that Anthricin inhibits cell viability in a dose- and time-dependent manner ($IC_{50}$ 50 nM) in the MTT assay and Live & Dead assay. In addition, Anthricin treated FaDu cells showed marked apoptosis by DAPI stain and FACS. Furthermore, Anthricin activates anti-apoptotic factors such as caspase-3, -9 and poly (ADP-ribose) polymerase (PARP), suggesting that caspase-mediated pathways are involved in Anthricin- induced apoptosis. Anthricin treatment also leads to accumulation of the pro-apoptotic factor Bax, followed by inhibition of cell growth. Taken together, these results indicate that Anthricn-induced cell death of human FaDu hypopharyngeal squamous carcinoma cells is mediated by mitochondrial-dependent apoptotic pathway. In summary, our findings provide a framework for further exploration on Anthricin as a novel chemotherapeutic drug for human oral cancer.

Inhibitory Effect of Ligularia Stenocephala on the Cancer Metastasis

  • Lee, Dong-Keon;Kim, Jin-Kyu;Kim, Jong-Soo;Park, Kyoung-Jae;Cha, Dong-Seok;Jeon, Hoon
    • Natural Product Sciences
    • /
    • v.18 no.2
    • /
    • pp.89-96
    • /
    • 2012
  • Ligularia stenocephala has been used as a traditional medicine for the treatment of asthma, arthritis, jaundice, and hyperpiesia. In this study, we investigated the anti-metastatic and hypnotic effects of the methanolic extract of L. stenocephala (MLS). Gelatin zymographic analysis revealed that MLS suppresses matrix metalloproteinase-2 (MMP-2) and MMP-9 activities in B16F10 cells. The gene expressions of MMPs were also down-regulated by MLS treatment in a dose-dependent manner. In addition, cancer cell invasion and migration were attenuated by MLS via suppression of NF-${\kappa}B$ activation. The in vivo lung metastasis of B16F10 melanoma cells was also inhibited by the treatment of MLS. These findings show that MLS has anti-metastatic properties, and, therefore, it might be applicable as a valuable anti-metastatic agent.

Immunostimulating Activity of Beta-Glucan Isolated from the Cell Wall of Mutant Saccharomyces cerevisiae, and Its Anti-Tumor Application in Combination with Cisplatin (Saccharomyces cerevisiae 변이주 세포벽 유래의 베타글루칸의 면역활성 및 Cisplatin과의 병용에 의한 항암 상승작용)

  • Kim, Wan-Jae;Yoon, Taek-Joon;Kim, Dong-Woo;Moon, Won-Kook;Lee, Kwang-Ho
    • The Korean Journal of Food And Nutrition
    • /
    • v.23 no.2
    • /
    • pp.141-146
    • /
    • 2010
  • Cisplatin(cis-diamminedichloroplatium) is one of the most effective anti-cancer drugs being clinically used in the treatment of solid tumors. Despite its therapeutic benefits, its use in clinical practice is often limited because of dose related toxicity. It is known that yeast cell wall beta-glucans possess immuno-modulating properties, which allows for their application in antitumor therapy. IS2 is a kind of beta-glucan derived from the cell wall of mutated Saccharomyces cerevisiae, which exhibits anti-cancer activity in vitro and in vivo. The present study explored the possibility of combination therapy of IS2 with cisplatin. In experimental metastasis of colon26-M3.1 cells, prophylactic intravenous administration of IS-2 in combination with cisplatin effectively inhibited tumor metastasis compared with cisplatin alone or IS-2 treatment in vivo. IS-2 effectively enhanced Th1 type cytokines including IFN-$\gamma$, IL-2, IL-12 and GM-CSF. Simultaneously, this combined treatment inhibited production of Th2 type cytokines compared with control. These results suggested that IS-2 can be applied in combination therapy with anti-cancer drugs to minimize their side effects.

1H-NMR-Based Metabolic Profiling of Cordyceps militaris to Correlate the Development Process and Anti-Cancer Effect

  • Oh, Junsang;Choi, Eunhyun;Yoon, Deok-Hyo;Park, Tae-Yong;Shrestha, Bhushan;Choi, Hyung-Kyoon;Sung, Gi-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.8
    • /
    • pp.1212-1220
    • /
    • 2019
  • The study of metabolomics in natural products using the diverse analytical instruments including GC-MS, LC-MS, and NMR is useful for the exploration of physiological and biological effects and the investigation of drug discovery and health functional foods. Cordyceps militaris has been very attractive to natural medicine as a traditional Chinese medicine, due to its various bioactive properties including anti-cancer and anti-oxidant effects. In this study, we analyzed the metabolite profile in 50% ethanol extracts of C. militaris fruit bodies from three development periods (growth period, matured period, and aging period) using $^1H-NMR$, and identified 44 metabolites, which are classified as 16 amino acids, 10 organic acids, 5 carbohydrates, 3 nucleotide derivatives, and 10 other compounds. Among the three development periods of the C. militaris fruit body, the aging period showed significantly higher levels of metabolites including cordycepin, mannitol (cordycepic acid), and ${\beta}-glucan$. Interestingly, these bioactive metabolites are positively correlated with antitumor growth effect; the extract of the aging period showed significant inhibition of HepG2 hepatic cancer cell proliferation. These results showed that the aging period during the development of C. militaris fruit bodies was more highly enriched with bioactive metabolites that are associated with cancer cell growth inhibition.

Curcumin Inhibits Expression of Inhibitor of DNA Binding 1 in PC3 Cells and Xenografts

  • Yu, Xiao-Ling;Jing, Tao;Zhao, Hui;Li, Pei-Jie;Xu, Wen-Hua;Shang, Fang-Fang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.3
    • /
    • pp.1465-1470
    • /
    • 2014
  • Inhibitor of DNA binding 1 (Id1) plays an important role in genesis and metastatic progression of prostate cancer. We previously reported that down regulation of Id1 by small interfering RNA could inhibit the proliferation of PC3 cells and growth of its xenografted tumors. Curcumin, the active ingredient of turmeric, has shown anti-cancer properties via modulation of a number of different molecular regulators. Here we investigated whether Id1 might be involved in the anti-cancer effects of curcumin in vivo and in vitro. We firstly confirmed that curcumin inhibited cell viability in a dose-dependent fashion, and induced apoptosis in PC3 cells, associated with significant decrease in the mRNA and protein expression of Id1. Similar effects of curcumin were observed in tumors of the PC3 xenografted mouse model with introperitoneal injection of curcumin once a day for one month. Tumor growth in mice was obviously suppressed by curcumin during the period of 24 to 30 days. Both mRNA and protein levels of Id1 were significantly down-regulated in xenografted tumors. Our findings point to a novel molecular pathway for curcumin anti-cancer effects. Curcumin may be used as an Id1 inhibitor to modulate Id1 expression.

Anti-Proliferative Effect of Naringenin through p38-Dependent Downregulation of Cyclin D1 in Human Colorectal Cancer Cells

  • Song, Hun Min;Park, Gwang Hun;Eo, Hyun Ji;Lee, Jin Wook;Kim, Mi Kyoung;Lee, Jeong Rak;Lee, Man Hyo;Koo, Jin Suk;Jeong, Jin Boo
    • Biomolecules & Therapeutics
    • /
    • v.23 no.4
    • /
    • pp.339-344
    • /
    • 2015
  • Naringenin (NAR) as one of the flavonoids observed in grapefruit has been reported to exhibit an anti-cancer activity. However, more detailed mechanism by which NAR exerts anti-cancer properties still remains unanswered. Thus, in this study, we have shown that NAR down-regulates the level of cyclin D1 in human colorectal cancer cell lines, HCT116 and SW480. NAR inhibited the cell proliferation in HCT116 and SW480 cells and decreased the level of cyclin D1 protein. Inhibition of proteasomal degradation by MG132 blocked NAR-mediated cyclin D1 downregulation and the half-life of cyclin D1 was decreased in the cells treated with NAR. In addition, NAR increased the phosphorylation of cyclin D1 at threonine-286 and a point mutation of threonine-286 to alanine blocked cyclin D1 downregulation by NAR. p38 inactivation attenuated cyclin D1 downregulation by NAR. From these results, we suggest that NAR-mediated cyclin D1 downregulation may result from proteasomal degradation through p38 activation. The current study provides new mechanistic link between NAR, cyclin D1 downregulation and cell growth in human colorectal cancer cells.