• Title/Summary/Keyword: Anti-cancer drug

Search Result 530, Processing Time 0.035 seconds

Caffeic Acid Phenethyl Ester Induces the Expression of NAG-1 via Activating Transcription Factor 3 (ATF3를 통한 caffeic acid phenethyl ester에 의한 NAG-1 유전자의 발현 증가)

  • Park, Min-Hee;Chung, Chungwook;Lee, Seong Ho;Baek, Seung Joon;Kim, Jong Sik
    • Journal of Life Science
    • /
    • v.28 no.1
    • /
    • pp.37-42
    • /
    • 2018
  • Non-steroidal anti-inflammatory drug-activated gene-1 (NAG-1) is a transforming growth factor beta (TGF-${\beta}$) superfamily gene associated with pro-apoptotic and anti-tumorigenic activities. In the present study, we investigated if caffeic acid phenethyl ester (CAPE) derived from propolis could induce the expression of anti-tumorigenic gene NAG-1. Our results indicate that CAPE significantly induced NAG-1 expression in a time- and concentration-dependent manner in HCT116 cells. We also found that CAPE induced NAG-1 expression in a concentration-dependent manner in another human colorectal cancer cell line, LOVO. In addition, CAPE triggered apoptosis, which was detected with Western blot analysis using poly-(ADP-ribose) polymerase antibody. NAG-1 induction by CAPE was not dependent on transcription factor p53, which was confirmed with Western blot analysis using p53 null HCT116 cells. The luciferase assay results indicated that the new cis-elements candidates were located between -474 and -1,086 of the NAG-1 gene promoter. CAPE dramatically induced activating transcription factor 3 (ATF3) expression, but not cAMP response element-binding protein (CREB), which shares the same binding sites with ATF3. The co-transfection experiment with pCG-ATF3 and pCREB showed that only ATF3 was associated with NAG-1 up-regulation by CAPE, whereas CREB had no effect. In conclusion, the results suggest that CAPE could induce the expression of anti-tumorigenic gene NAG-1 mainly through ATF3.

Induction of Apoptosis by Samgibopae-tang in Human Non-small-cell Lung Cancer Cells (인체폐암세포 NCI-H460 및 A549의 증식에 미치는 삼기보폐탕의 영향 비교)

  • Heo, Man-Kyu;Park, Cheol;Choi, Young-Hyun;Kam, Cheol-Woo;Park, Dong-Il
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.4
    • /
    • pp.973-981
    • /
    • 2007
  • In the present study, we investigated the antiproliferative activity of the water extract of Samgibopae-tang (SGBPT) in NCI-H460 and A549 non-small-cell lung cancer cell lines. We found that exposure of A549 cells to SGBPT resulted in the growth inhibition in a dose-dependent manner as measured by MTT assay, however SGBPT did not affect the growth of NCI-H460 cells. The antiproliferative effect by SGBPT treatment in A549 cells was associated with morphological changes such as membrane shrinking and cell rounding up. SGBPT treatment did not induce the cell cycle arrest in both cell lines, however the frequency of sub-G1 population was concentration-dependently increased by SGBPT treatment in A549 cells. SGBPT treatment partially induced the expression of tumor suppressor p53 in A549 cells and the expression of cyclin-dependent kinase inhibitor p21(WAF1/CIP1) was markedly increased in both transcriptional and translational levels in A549 cells. The up-regulation of p21 by SGBPT occurred in a similar a concentration dependent manner to that observed with the inhibition of cell viability and induction of sub-G1 population of the cell cycle. However SGBPT treatment did not affect other growth regulation-related genes such as early growth response-1 (Egr-1), nonsteroidal anti-inflammatory drug-activated gene-1 (NAG-1), inducible nitric oxide synthease (iNOS), cyclooxygenases (COXs), telomere-regulatory factors in A549 as well as NCI-H460 cells. Taken together, these findings suggested that SGBPT-induced inhibition of human lung carcinoma A549 cell growth was aoosciated with the induction of p21 and the results provided important new insights into the possible molecular mechanisms of the anti-cancer activity of SGBPT.

Effects of an Anti-cancer Drug, Tubastatin A, on the Growth and Development of Immature Oocytes in Mice (항암제 tubastatin A에 의한 생쥐 미성숙 난모세포의 성장과 발달에 미치는 효과)

  • Choi, Yun-Jung;Min, Gyesik
    • Journal of Life Science
    • /
    • v.29 no.1
    • /
    • pp.105-111
    • /
    • 2019
  • In recent years, progress has been made in the search for the development of new anti-cancer agents by employing specific inhibitors of histone deacetylase (HDAC)-6 to block signal transduction pathways in cancer cells. This study examined the effects of tubastatin A (TubA), an HDAC-6 inhibitor, on the growth and development of immature oocytes in murine ovaries using RNA sequencing analysis. The results from a gene set enrichment analysis (GSEA) indicated that the expression of most of the gene sets involved in the cell cycle and control and progression of meiosis decreased in the TubA-treated group as compared with that in germinal vesicle (GV) stage oocytes. In addition, an ingenuity pathway analysis (IPA) suggested that TubA not only caused increased expression of p53 and pRB and decreased expression of CDK4/6 and cyclin D but also caused elevated expression of genes involved in the control of the DNA check point in G2/M stage oocytes. These results suggest that TubA may induce cell cycle arrest and apoptosis through the induction of changes in the expression of genes involved in signal transduction pathways associated with DNA damage and the cell cycle of immature oocytes in the ovary.

Discovering the Anti-cancer Effects of Ligusticum Chuanxiong through Network-based Pharmacology Analysis and Molecular Docking: An Inquiry into Natural Products (네트워크 기반 약리학 분석 및 분자 도킹을 통한 천궁의 항암 효과 예측: 천연물에 대한 탐구)

  • Do Kyung Han;Jee Won Shon;Eui Suk Sung;Youn Sook Kim;Won G. An
    • Journal of Life Science
    • /
    • v.33 no.11
    • /
    • pp.876-886
    • /
    • 2023
  • In some cases of head and neck cancers (HNC), surgical interventions may result in the loss of organs and/or changes to their functions, thereby significantly affecting the patient's quality of life. As a result, the surgical treatment of HNC patients is often limited to specific cases, and alternative treatment modalities, such as chemotherapy, are considered. However, serious adverse effects caused by chemotherapy, such as severe nausea and vomiting, necessitate the need for the development of adjunctive methods to minimize patient suffering. Chuanxiong, Ligusticum chuanxiong (L. chuanxiong), is a natural herb used in Eastern medicine to treat cerebrovascular disorders and headaches. This study aimed to predict the effect and potential of L. chuanxiong as an auxiliary anticancer drug through network-based pharmacology and molecular docking analysis. The study results showed that 40 out of 41 genes of L. chuanxiong shared common targets of HNC and their proteins could be used to target HNC cells to prevent cancer progression. The results of the functional enrichment analysis confirmed that L. chuanxiong is associated with the neuroactive-ligand metabolism and neurotransmitter pathways, indicating its potential medicinal value as an adjuvant in HNC treatment. Lastly, our findings demonstrated that the active ingredient of L. chuanxiong, (Z)-Ligustilide, has the ATP binding site of heat shock protein 90, a protein known to promote the activation of cancer cells. These results suggest that L. chuanxiong is a promising candidate for developing auxiliary anticancer drugs, and further research could potentially lead to the discovery of newer and safer anti-cancer agents.

The Effect of Intrathecal Epigallocatechin Gallate on the Development of Antinociceptive Tolerance to Morphine (척수강 내로 투여한 Epigallocatechin Gallate이 모르핀의 항침해 작용에 대한 내성 발생에 미치는 효과)

  • Kim, Woong Mo;Bae, Hong Beom;Choi, Jeong Il
    • The Korean Journal of Pain
    • /
    • v.22 no.3
    • /
    • pp.199-205
    • /
    • 2009
  • Background: A major ingredient of green tea is epigallocatechin-3-gallate (EGCG), and this is known to have many beneficial effects for cancer prevention and also on the cardiovascular system and neurodegenerative diseases through its anti-oxidant, anti-angiogenic, anti-inflammatory, lipid-lowering and neuroprotective properties. Its actions on nociception and the spinal nervous system have been examined in only a few studies, and in these studies EGCG showed an antinociceptive effect on inflammatory and neuropathic pain, and a neuroprotective effect in motor neuron disease. This study was performed to investigate the effect of EGCG on acute thermal pain and the development of morphine tolerance at the spinal level. Methods: The experimental subjects were male Sprague-Dawley rats and the Hot-Box test was employed. A single or double-lumen intrathecal catheter was implanted at the lumbar enlargement for drug administration. An osmotic pump was used to infuse morphine for 7 days for induction of morphine tolerance. EGCG was injected repeatedly for 7 days at twice a day through the intrathecal catheter. Results: Intrathecal EGCG increased the paw withdrawal latency (PWL) after repeated administration for 7 days at twice a day, but this did not happen with administering on single bolus injection of EGCG. In addition, the antinociceptive effect of intrathecal morphine was not affected by co-administration with EGCG. A continuous 7-day infusion of morphine caused a significant decrease of the PWL in the control group (M + S, morphine plus saline). In contrast, intrathecal EGCG injection over 7 days blocked the decrease of the PWL in the experiment group (M + E, morphine plus EGCG). Conclusions: Intrathecal ECGC produced a weak antinociceptive effect for acute thermal pain, but it did not change the morphine's analgesic effect. However, the development of antinociceptive tolerance to morphine was attenuated by administering intrathecal EGCG.

THE STUDY ON TISSUE CULTURED WILD MOUNTAIN GINSENG(Panax Ginseng C.A. Meyer) ADVENTITIOUS ROOTS EXTRACT AS A COSMETIC INGREDIENT

  • Jung, Eun-Joo;Park, Jong-Wan;Kim, Joong-Hoi;Paek, Kee-Yoeup
    • Proceedings of the SCSK Conference
    • /
    • 2003.09a
    • /
    • pp.611-616
    • /
    • 2003
  • Korean ginseng(Panax Ginseng C.A. Meyer) known as a oriental miracle drug is an important medicinal plant. Ginseng has been used for geriatric, tonic, stomachic, and aphrodisiac treatments for thousands years. Also, it is an antibiotic and has therapeutic properties against stress and cancer. Ginseng is widely distributed all over the world. Among them, Korean mountain ginseng has the most valuable effect on pharmaceuticals. The roots of mountain ginseng contained several kinds of ginsenosides that have many active functions for the human body. However, the study of mountain ginseng has a limit because the mountain ginseng is very expensive and rare. So, we artificially cultured mountain ginseng adventitious roots using the bioreactor culture system. We induced callus from original mountain ginseng, directly dug up in mountain and aged about one hundred ten years. Separated adventitious roots were precultured in 500ml conical flasks and then, transferred in 20L bioreactors. The adventitious roots of mountain ginseng were harvested after culturing for 40days, dried and then, extracted with several solvents. In this study, we investigated the whitening effect, anti-wrinkle effect and the safety of tissue cultured adventitious roots extract of mountain ginseng in order to identify the merit as a cosmetic ingredient. Particularly, extract of mountain ginseng adventitious roots showed whitening and anti-wrinkle effects. The inhibitory effect of this extract on the melanogenesis was examined using B-16 melanoma cell. When B-16 melanoma cells were cultured with adventitious root extract, there was a dramatically decrease in melanin contents of 8-16 melanoma cell. And we identified this extract inhibited Dopa auto-oxidation significantly. Also, when transformed mouse fibroblast L929 cells were treated with this extract, there was a significant increase in collagen synthesis. The results show significant inhibited melanization and wrinkle without inhibiting cell viability.

  • PDF

Evaluation of the Anti-Tumor Effects of Paclitaxel-Encapsulated pH-Sensitive Micelles

  • Han, Jong-Kwon;Kim, Min-Sang;Lee, Doo-Sung;Kim, Yoo-Shin;Park, Rang-Woon;Kim, Kwang-Meyung;Kwon, Ick-Chan
    • Macromolecular Research
    • /
    • v.17 no.2
    • /
    • pp.99-103
    • /
    • 2009
  • We evaluated the efficacy of pH-sensitive micelles, formed by methoxy poly(ethylene glycol)-b-poly($\beta$)-amino ester) (PEG-PAE), as carriers for paclitaxel (PIX), a drug currently used to treat various cancers. PTX was successful encapsulated by a film hydration method. Micelles encapsulated more than 70% of the PTX and the size of the PTX-encapsulated micelles (PTX-PM) was less than 150 nm. In vitro experiments indicated that the micelles were unstable below pH 6.5. After encapsulation of PTX within the micelles, dynamic light scattering (DLS) studies indicated that low pH had a similar demicellization effect. An in vitro release study indicated that PTX was slowly released at pH 7.4 (normal body conditions) but rapidly released under weakly acidic conditions (pH 6.0). We demonstrated the safety of micelles from in vitro cytotoxicity tests on HeLa cells and the in vivo anti-tumor activity of PTX-PM in B16F 10 tumor-bearing mice. We concluded that these pH-sensitive micelles have potential as carriers for anti-cancer drugs.

Ginsenoside F1 Modulates Cellular Responses of Skin Melanoma Cells

  • Yoo, Dae-Sung;Rho, Ho-Sik;Lee, Yong-Gyu;Yeom, Myung-Hun;Kim, Duck-Hee;Lee, Sang-Jin;Hong, Sung-Youl;Lee, Jae-Hwi;Cho, Jae-Youl
    • Journal of Ginseng Research
    • /
    • v.35 no.1
    • /
    • pp.86-91
    • /
    • 2011
  • Ginsenoside (G)-F1 is an enzymatic metabolite generated from G-Rg1. Although this metabolite has been reported to suppress platelet aggregation and to reduce gap junction-mediated intercellular communication, the modulatory activity of G-F1 on the functional role of skin-derived cells has not yet been elucidated. In this study, we evaluated the regulatory role of G-F1 on the cellular responses of B16 melanoma cells. G-F1 strongly suppressed the proliferation of B16 cells up to 60% at 200 ${\mu}g/mL$, while only diminishing the viability of HEK293 cells up to 30%. Furthermore, G-F1 remarkably induced morphological change and clustering of B16 melanoma cells. The melanin production of B16 cells was also significantly blocked by G-F1 up to 70%. Interestingly, intracellular signaling events involved in cell proliferation, migration, and morphological change were up-regulated at 1 h incubation but down-regulated at 12 h. Therefore, our results suggest that G-F1 can be applied as a novel anti-skin cancer drug with anti-proliferative and anti-migration features.

Synthesis of 18F Labeled Clotrimazole Derivatives as a Potential PET Imaging Agent (18F을 표지 암 영상용 클로트리마졸 유도체의 합성)

  • Jung, Soon Jae;Kim, In Jong;Park, Jeong Hoon;Lee, Heung Nae;Kim, Sang Wook;Hur, Min Goo;Choi, Sang Moo;Yang, Seung Dae;Yu, Kook Hyun
    • Journal of Radiation Industry
    • /
    • v.4 no.1
    • /
    • pp.7-11
    • /
    • 2010
  • Clotrimazole [1-{(2-chlorophenyl)-diphenylmethyl}-1H-imidazole, CLT] has been reported to inhibit the proliferation of vascular endothelial and act as an in vitro anti-VEGF drug. It is also shown to inhibit angiogenesis in an animal model. The radioisotope labeled clotrimazole derivative can be utilized to monitor the physiologic processes of cancer. In this study, we synthesized [$^{18}F$]fluoride labeled clotrimazole derivatives as a new tumor imaging agent for PET. The references were prepared by a refluxing with clotrimazole and an excess of fluoroalkyltosylate in acetonitrile for 36 h and clotrimazole reacted with ditosylalkane to give precursors. [$^{18}F$]Fluoride labeled reaction was performed with precursor in Kryptofix[2.2.2]/$K_2CO_3$ for 10 min at $80^{\circ}C$. The radiolabeling mixture was passed through a silica Sep-Pak cartridge to remove $^{18}F^-$. The [$^{18}F$]F-clotrimazole derivatives were synthesized with a 20~25% yield. In the radiofluorination step, we used acetonitrile and DMSO as a solvent and observed a higher yield at the acetonitrile (25%) reaction compared with the DMSO reaction (5%).

Evaluation of Antifungal and Antibacterial Activity of Newly Developed Licorice Varieties

  • Kang, Sa-Haeng;Song, Young-Jae;Jeon, Yong-Deok;Soh, Ju-Ryun;Park, Jung-Hyang;Lee, Jeong-Hoon;Park, Chun-Geon;Jang, Jae-Ki;Jin, Jong-Sik
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.10a
    • /
    • pp.103-103
    • /
    • 2019
  • Glycyrrhizae radix, commonly known as licorice, is a perennial herb belonging to Leguminosae and also includes various components such as, glycyrrhizin, liquiritin, liquiritigenin and isoliquiritigenin etc. Licorice has been widely used in East Asia as a medicine having pharmacological effects like antioxidants, anti-bacterial, anti-inflammatory, anti-cancer and immune modulatory activities. Among various licorice, Glycyrrhiza (G.) uralensis G. glabra and G. inflata are used for pharmaceutical purposes in Korea. However, cultivation of licorice has some problems such as low quality, low productivity, and early leaf drop. Korea Rural Development Administration developed new cultivars Wongam and Sinwongam, which are improved in cultivation and quality. To register the newly developed cultivar (s) on Ministry of Food and Drug Safety in Korea as a medicine, it is necessary to prove the similarity and difference through the comparative studies between already-registered species and new cultivars. Some fungi and bacteria usually in the human oral cavity and intestines exist as harmless state in human body. Also, the skin and genital infections by fungi can lead to toxic systemic infections and are accompanied by flushing, rashes, burning or painful sensation. The influences of licorice varieties on fungi and bacteria might be an evidence to prove the outstanding effect of newly developed licorice variety. In this study, the antifungal and antibacterial activity was investigated using newly developed licorice varieties Wongam, and Sinwongam against various fungi and bacteria. These results means newly developed licorice could be used as a replacement of already-registered species in terms of antifungal and antibacterial application.

  • PDF