• Title/Summary/Keyword: Anti-cancer Activity

Search Result 1,437, Processing Time 0.025 seconds

Evaluation of T-Type Calcium Channel Blockers against Human Pancreatic MIA PaCa-2 Carcinoma Xenografts

  • Park, Jin Yeong;Choi, Heung Woo;Choi, Doo Li;Jang, Sun Jeong;Kim, Je Hak;Lee, Joo Han;Choo, Dong Joon;Kim, Jungahn;Lee, Kyung-Tae;Lee, Jae Yeol
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.482-488
    • /
    • 2013
  • Two piperazine-containing 3,4-dihyroquinazolines (BK10007S/8S) have been synthesized, based on our previous work on the synthesis and antitumoral activity of 3,4-dihyroquinazolines. After evaluating them for T-type calcium channel blocking effect and in vitro anti-cancer effect, they were profiled for acute and repeat dose toxicity (40 mg/kg, 2 weeks) to BALB/c mice. BK10007S/8S were further in vivo evaluated against human pancreatic MIA PaCa-2 carcinoma in $BALB/c^{nu/nu}$ nude mice, which exhibited 54 and 61% tumor growth inhibition through 57-day oral administration of 2 mg/kg of body weight, respectively.

Differential Modulation of Lipopolysaccharide-Induced Inflammatory Cytokine Production by and Antioxidant Activity of Fomentariol in RAW264.7 Cells

  • Seo, Dong-Won;Yi, Young-Joo;Lee, Myeong-Seok;Yun, Bong-Sik;Lee, Sang-Myeong
    • Mycobiology
    • /
    • v.43 no.4
    • /
    • pp.450-457
    • /
    • 2015
  • Medicinal mushrooms have been used worldwide to treat cancer and modulate the immune system. Over the last several years, there has been increasing interest in isolating bioactive compounds from medicinal mushrooms and evaluating their health beneficial effects. Fomes fomentarius is used in traditional oriental medicine and is known to possess antioxidant, antiinflammatory, antidiabetic, and antitumor effects. In the present study, we isolated fomentariol from Fomes fomentarius and investigated its anti-inflammatory effect in murine macrophages (RAW264.7 cells) stimulated with lipopolysaccharides. Fomentariol inhibited the production of nitric oxide and intracellular reactive oxygen species triggered by lipopolysaccharides. Interestingly, fomentariol differentially regulated cytokine production triggered by lipopolysaccharides. Fomentariol effectively suppressed the production of interleukin-$1{\beta}$ and interleukin-6 but not tumor necrosis factor-${\alpha}$. The inhibitory effect of fomentariol against nitric oxide, interleukin-$1{\beta}$, and interleukin-6 production was possibly mediated by downregulation of the extracellular signal-regulated kinase signaling pathway. Taken together, our results suggest that fomentariol differentially modulated inflammatory responses triggered by lipopolysaccharides in macrophages and is one of the bioactive compounds that mediate the physiological effects of Fomes fomentarius.

Changes in Flavonol Glycoside Contents of Orostachys Japonicus a. Berger according to Cultivation Conditions (재배 조건에 따른 바위솔의 Flavonol Glycoside 함량 변화)

  • Jang, Sang-Hun;Kang, Dong-Min;Kang, Jin-Ho;Park, Jong-Cheol;Lee, Sang-Gyeong;Shin, Sung-Chul
    • Korean Journal of Medicinal Crop Science
    • /
    • v.13 no.6
    • /
    • pp.250-254
    • /
    • 2005
  • The contents of flavonol glycosides, $kaempferol-3-O-{\beta}-D-glucoside$(1), $kaempferol-3-O-{\beta}-D-glactoside$ (2), $kaempferol-3-O-{\beta}-D-rhamnoside$ (3), $quercetin-3-O-{\beta}-D-glucoside$ (4) and $quercetin-3-O-{\alpha}-D-rhamnoside$ (5) in the houseleeks controlled by night-break, day-length control, and temperature during overwintering were determined to be compared with those in wild one. The contents of the flavonol glycosides 1-5 in the houseleeks were decreased roughly with warming during overwintering, and increased with longer light duration under the day-length control experiments. While warming functioned negatively on the production of the flavonol glycosides in the houseleek, longer light irradiation did positively during overwintering.

Development of Doxorubicin overproducing Streptomyces Strain using Protoplast Regeneration (방선균 원형질체 재생에 의한 독소루비신 고생산성 균주개발)

  • 박희섭;박현주;김용훈;임상민;김동일;류욱상;김상린;김응수
    • KSBB Journal
    • /
    • v.18 no.4
    • /
    • pp.289-293
    • /
    • 2003
  • Doxorubicin is an anthracycline-family polyketide compound with a very potent anti-cancer activity, typically produced by Streptomyces peucetius. In order to increase doxurubicin productivity, a semi-industrial doxorubicin-producing Streptomyces strain named BR-Dox was cultured in a R2YE liquid medium containing CaCO$_3$, and then converted to a cell wall-free protoplast using lysozyme treatment method, followed by PEG-mediated cell wall regeneration. Among several protoplast-regenerated Streptomyces BR-Dox strains, two independent isolates named BR-Dox4 and BR-Dox6 were visually selected using thin layer chromatography (TLC) based on the pigment overproducing phenotype. Comparing with Streptomyces BR-Dox parental strain, two protoplast-regenerated strains, BR-Dox4 and BR-Dox6 exhibited 25.2% and 12.2% higher doxorubicin productivity analyzed by high pressure liquid chromatography (HPLC), respectively. This result suggests that a protoplast-regeneration of an antibiotics-producing Streptomyces strain should be a promising strain development approach for antibiotics overproduction in Streptomyces species.

Chemical constituents from the culture filtrate of a Himalayan soil fungus, Preussia sp. and their anti-inflammatory activity (히말라야의 토양 곰팡이, Preussia sp. 배양액으로부터 추출된 화학 성분들 및 항 염증 활성)

  • Youn, Ui Joung;Seo, Seung Suk;Yim, Jung Han;Kim, Il Chan;Han, Se Jong
    • Korean Journal of Microbiology
    • /
    • v.54 no.1
    • /
    • pp.18-23
    • /
    • 2018
  • A new naturally occurring benzoic acid derivative, benzyl 2,4-di(benzyloxy)benzoate (1) and six known compounds (2-7) were isolated from the fungus, Preussia sp. found in frozen soil of the Himalaya Mountain. The structures of the new compound, together with the known compounds were determined by 1D-and 2D-NMR experiments, as well as comparison with published values. In addition, to the best of our knowledge, the known compounds 2-7 were isolated for the first time from the genus Preussia and the family Sporormiaceae. The isolates were evaluated for cancer chemopreventive potential based on their ability to inhibit nitric oxide (NO) production induced by lipopolysaccharide (LPS) in mouse macrophage RAW 264.7 cells in vitro. Compounds 1 and 2 inhibited NO production by 50.7% and 88.5% at a concentration of 100 mg/ml, respectively.

Investigation into the Efficacy of Val-SN-38, a Valine-Ester Prodrug of the Anti-Cancer Agent SN-38

  • Kwak, Eun-Young;Choi, Min-Koo;Yang, Su-Geun;Shim, Chang-Koo;Shim, Won-Sik
    • Biomolecules & Therapeutics
    • /
    • v.20 no.3
    • /
    • pp.326-331
    • /
    • 2012
  • We recently reported that Val-SN-38, a novel valine ester prodrug of SN-38, had greatly improved the intracellular accumulation of SN-38 in MCF-7 cell line, probably through enhanced uptake via amino acid transporters. In the present study, the efficacy of Val-SN-38 was further investigated both in vitro and in vivo. It was found that the in vitro cytotoxic effect of Val-SN-38 was similar to that of SN-38. Moreover, Val-SN-38 exhibited an equal potency to that of SN-38 in survival experiments in vivo. Because these results seemed to be contrary to the previous finding, further investigation was performed to find out the underlying cause of the contradiction. As only the lactone form is known to have cytotoxic activity, the proportion of lactone in Val-SN-38 and SN-38 was determined, but no differences were found. However, it turned out that Val-SN-38 had poor stability compared with SN-38, which resulted in a decrease in beneficial efficacy for Val-SN-38. Overall, the present study showed that a valine-added prodrug approach could be advantageous provided that the stability of the compound can be ensured. We believe this is a noteworthy study that unravels the discrepancy between intracellular accumulation and efficacy of valine-added prodrug.

Antiproliferative Effects of Free and Encapsulated Hypericum Perforatum L. Extract and Its Potential Interaction with Doxorubicin for Esophageal Squamous Cell Carcinoma

  • Amjadi, Issa;Mohajeri, Mohammad;Borisov, Andrei;Hosseini, Motahare-Sadat
    • Journal of Pharmacopuncture
    • /
    • v.22 no.2
    • /
    • pp.102-108
    • /
    • 2019
  • Objectives: Esophageal squamous cell carcinoma (ESCC) is considered as a deadly medical condition that affects a growing number of people worldwide. Targeted therapy of ESCC has been suggested recently and required extensive research. With cyclin D1 as a therapeutic target, the present study aimed at evaluating the anticancer effects of doxorubicin (Dox) or Hypericum perforatum L. (HP) extract encapsulated in poly(lactic-co-glycolic acid) (PLGA) nanoparticles on the ESCC cell line KYSE30. Methods: Nanoparticles were prepared using double emulsion method. Cytotoxicity assay was carried out to measure the anti-proliferation activity of Dox-loaded (Dox NPs) and HP-loaded nanoparticles (HP NPs) against both cancer and normal cell lines. The mRNA gene expression of cyclin D1 was evaluated to validate the cytotoxicity studies at molecular level. Results: Free drugs and nanoparticles significantly inhibited KYSE30 cells by 55-73% and slightly affected normal cells up to 29%. The IC50 of Dox NPs and HP NPs was ~ 0.04-0.06 mg/mL and ~ 0.6-0.7 mg/mL, respectively. Significant decrease occurred in cyclin D1 expression by Dox NPs and HP NPs (P < 0.05). Exposure of KYSE-30 cells to combined treatments including both Dox and HP extract significantly increased the level of cyclin D1 expression as compared to those with individual treatments (P < 0.05). Conclusion: Dox NPs and HP NPs can successfully and specifically target ESCC cells through downregulation of cyclin D1. The simultaneous use of Dox and HP extract should be avoided for the treatment of ESCC.

Apoptotic activity of demethoxycurcumin in MG-63 human osteosarcoma cells

  • Kang, Kyeong-Rok;Kim, Jae-Sung;Kim, Tae-Hyeon;Seo, Jeong-Yeon;Park, Jong-Hyun;Chun, Hong Sung;Yu, Sun-Kyoung;Kim, Heung-Joong;Kim, Chun Sung;Kim, Do Kyung
    • International Journal of Oral Biology
    • /
    • v.46 no.1
    • /
    • pp.23-29
    • /
    • 2021
  • Demethoxycurcumin (DMC), which is a curcuminoid found in turmeric, has anti-proliferative effects on cancer cells. However, the effect of DMC on osteosarcoma has not been established. The aim of this study was to examine the effects of DMC on cell growth and apoptosis induction in MG-63 human osteosarcoma cells. This study was investigated using 3-[4, 5-dimethylthiazol-2-yl]-2, 5 diphenyl tetrazolium bromid assay, Live/Dead cell assay, 4', 6-diamidino-2-phenylindole staining, and immunoblotting in MG-63 cells. DMC induced MG-63 cell death in a dose-dependent manner, with an estimated IC50 value of 54.4 µM. DMC treatment resulted in nuclear condensation in MG-63 cells. DMC-induced apoptosis in MG-63 cells was mediated by the expression of Fas and activation of caspase-8, caspase-3, and poly (ADP-ribose) polymerase. Immunoblotting results showed that Bcl-2 and Bcl-xL were downregulated, while Bax and Bad were upregulated by DMC in MG-63 cells. These results indicated that DMC inhibits cell proliferation and induces apoptotic cell death in MG-63 human osteosarcoma cells via the death receptor-mediated extrinsic apoptotic pathway and mitochondria-mediated intrinsic apoptotic pathway.

Propranolol Inhibits the Proliferation of Human Glioblastoma Cell Lines through Notch1 and Hes1 Signaling System

  • Kim, Hyun Sik;Park, Young Han;Lee, Heui Seung;Kwon, Mi Jung;Song, Joon Ho;Chang, In Bok
    • Journal of Korean Neurosurgical Society
    • /
    • v.64 no.5
    • /
    • pp.716-725
    • /
    • 2021
  • Objective : The anti-tumor effect of the beta-adrenergic receptor antagonist propranolol in breast cancer is well known; however, its activity in glioblastoma is not well-evaluated. The Notch-Hes pathway is known to regulate cell differentiation, proliferation, and apoptosis. We investigated the effect of propranolol to human glioblastoma cell lines, and the role of Notch and Hes signaling in this process. Methods : We performed immunohistochemical staining on 31 surgically resected primary human glioblastoma tissues. We also used glioblastoma cell lines of U87-MG, LN229, and neuroblastoma cell line of SH-SY5Y in this study. The effect of propranolol and isoproterenol on cell proliferation was evaluated using the MTT assay (absorbance 570 nm). The impact of propranolol on gene expression (Notch and Hes) was evaluated using real-time polymerase chain reaction (RT-PCR, whereas protein levels of Notch1 and Hes1 were measured using Western blotting (WB), simultaneously. Small interfering RNA (siRNA) was used to suppress the Notch gene to investigate its role in the proliferation of glioblastoma. Results : Propranolol and isoproterenol caused a dose-dependent decrease in cell proliferation (MTT assay). RT-PCR showed an increase in Notch1 and Hes1 expression by propranolol, whereas WB demonstrated increase in Notch1 protein, but a decrease in Hes1 by propranolol. The proliferation of U87-MG and LN229 was not significantly suppressed after transfection with Notch siRNA. Conclusion : These results demonstrated that propranolol suppressed the proliferation of glioblastoma cell lines and neuroblastoma cell line, and Hes1 was more closely involved than Notch1 was in glioblastoma proliferation.

Bioactivity of Metabolites from Actinomycetes Isolates from Red Sea, Egypt

  • Osman, Mohamed E.;El-nasr, Amany A. Abo;Hussein, Hagar M;Hamed, Moaz M
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.2
    • /
    • pp.255-269
    • /
    • 2022
  • Actinomycetes isolated from marine habitats represent a promising source of bioactive substances. Here, we report on the isolation, identification, productivity enhancement and application of the bioactive compounds of Streptomyces qinglanensis H4. Eighteen marine actinomycetes were isolated and tested for resistance to seven bacterial diseases. Using 16S rRNA sequencing analysis (GenBank accession number MW563772), the most powerful isolate was identified as S. qinglanensis. Although the strain produced active compound(s) against a number of Gram-negative and Gram-positive bacteria, it failed to inhibit pathogenic fungi. The obtained inhibition zones were 22.0 ± 1.5, 20.0 ± 1, 16.0 ± 1, 12.0 ± 1, 22.0 ± 1 and 24.0 ± 1 mm against Bacillus subtilis ATCC 6633, Escherichia coli ATCC 19404, Enterococcus faecalis ATCC 29212, Pseudomonas aeruginosa ATCC 9027, Candida albicans ATCC 10231 and Staphylococcus aureus ATCC6538, respectively. To maximize bioactive compound synthesis, the Plackett-Burman design was used. The productivity increased up to 0.93-fold, when S. qinglanensis was grown in optimized medium composed of: (g/l) starch 30; KNO3 0.5; K2HPO4 0.25; MgSO4 0.25; FeSO4·7H2O, 0.01; sea water concentration (%) 100; pH 8.0, and an incubation period of 9 days. Moreover, the anticancer activity of S. qinglanensis was tested against two different cell lines: HepG2 and CACO. The inhibition activities were 42.96 and 57.14%, respectively. Our findings suggest that the marine S. qinglanensis strain, which grows well on tailored medium, might be a source of bioactive substances for healthcare companies.