• 제목/요약/키워드: Anti-apoptotic

검색결과 1,066건 처리시간 0.028초

The Anticancer Mechanisms of Taxol-Diethylenetriamine pentaacetate Conjugate in HT29 Human Colorectal Cancer cells

  • Lee, Na-Kyung;Kim, Hyun-Jeong;Yang, Seung-Ju;Kim, Yoon-Suk;Choi, Hyun-Il;Shim, Moon-Jeong;Awh, Ok-Doo;Kim, Tae-Ue
    • BMB Reports
    • /
    • 제34권3호
    • /
    • pp.237-243
    • /
    • 2001
  • Taxol, a natural product extracted from the Taxus brevifolia, is known to have significant anti-tumor activities against many common cancers, including ovarian and breast cancers. Despite the pronounced anti-tumor activity of this compound, its poor solubility in aqueous solutions hampers its clinical applications. We studied the anticancer mechanisms of the water-soluble taxol diethylenetriamine pentaacetate (DTPA) used for radiolabeling, and compared it to that of taxol. In vitro cytotoxicities of taxol and taxol-DTPA conjugate were tested in HT29 human colorectal cancer cells by the MTT method. As the result, the $IC_{50}$ value of the taxol-DTPA conjugate was about three fold higher than that of taxol. When analyzed by an agarose gel electrophoresis, the DNA ladders became evident after the incubation of cells with the taxol-DTPA conjugate for 24 h. We also found morphological changes of the cells undergoing apoptosis with electron microscopy Next, we examined the signal pathway of taxol-DTPA conjugate-induced apoptosis in HT29 cells. The activation of extracellular signal-regulated protein kinase (ERK1/2) occurred at 10, 30, 60 and 120 min after 200 nM taxol-DTPA conjugate treatment. The pretreatment of the MEK inhibitor (PD98059) completely blocked the taxol-DTPA conjugate-induced ERK1/2 activation. The activated ERK1/2 translocated into the nucleus at the same time and phosphorylated its transcriptional factor, c-Jun. These results suggest that the taxol-DTPA conjugate has an apoptotic activity in HT29 cells, and that its proapoptic activity might be related with the signal transduction via ERK1/2 and c-Jun similar to that of taxol.

  • PDF

Cytotoxic Effects on HL-60 Cells of Myosin Light Chain Kinase Inhibitor ML-7 Alone and in Combination with Flavonoids

  • Lee, Joong-Won;Kim, Yang-Jee;Choi, Young-Joo;Woo, Hae-Dong;Kim, Gye-Eun;Ha, Tae-Kyung;Lee, Young-Hyun;Chung, Hai-Won
    • Toxicological Research
    • /
    • 제25권4호
    • /
    • pp.181-188
    • /
    • 2009
  • Uncontrolled cell growth and increased cell proliferation are major features of cancer that are dependent on the stable structure and dynamics of the cytoskeleton. Since stable cytoskeleton structure and dynamics are partly regulated by myosin light chain kinase (MLCK), many current studies focused on MLCK inhibition as a chemotherapeutic target. As a potent and selective MLCK inhibitor, ML-7 [1-(5-iodonaphthalene-1-sulfonyl)-1 H-hexahydro-1,4-diazapine hydrochloride] is a promising candidate for an anticancer agent, which would induce apoptosis as well as prevents invasion and metastasis in certain types of cancer cells. This study assessed cytotoxic effects of ML-7 against HL-60 cells and therapeutic efficacy of ML-7 as a potential antileukemia agent. Trypan-blue exclusion assays showed dose- and time- dependent decreases in ML-7 treated HL-60 cells (p<0.05). Comet assays revealed a significant increase in DNA damage in HL-60 cells after treatment with $40{\mu}M$ ML-7 for 2h. Sub-G1 fractions, analyzed by flow cytometry increased in a dose-dependent manner, suggesting that ML-7 can induce apoptotic cell death in HL-60 cells. ML-7 was selectively cytotoxic towards HL-60 cells; not affecting normal human lymphocytes. That selective effect makes it a promising potential anti-leukemia agent. In addition, anticancer efficacy of ML-7 in combination with flavonoids (genistein or quercetin) or anticancer drugs (cisplatin or Ara-C) against HL-60 cells was assessed. Combination of ML-7 with flavonoids increased the anti-cancer effect of ML-7 to a greater extent than combination with the anticancer drugs. This implies that ML-7 in combination with flavonoids could increase the efficacy of anticancer treatment, while avoiding side effects cansed by conventional anticancer drug-containing combination chemotherapy.

소에서 정자활성, 수정 양상 및 착상전 지속적 수정란 발달에 있어서 환삼덩굴 추출액의 효과 (Effect of Humulus japonicus Extract on Sperm Motility, Fertilization Status and Subsequent Preimplantation Embryo Development in Cattle)

  • 민성훈;김진우;도건엽;이용희;안재현;채성규;김병오;박흠대;구덕본
    • Reproductive and Developmental Biology
    • /
    • 제38권3호
    • /
    • pp.115-121
    • /
    • 2014
  • Humulus japonicus is an ornamental plant in the Cannabaceae family. Although the mode of action of Humulus japonicus is not fully understood, a strong relationship was observed between anti-inflammatory and anticancer in some types of cells. Recent studies also have shown that Humulus japonicus possesses anti-inflammatory activities and may significantly improve antioxidant potential in Raw 264.7 macrophage cells. Thus, the aim of this study was evaluated the effect of Humulus japonicus extract on sperm motility and subsequent preimplantation developmental competence of the bovine embryos. After in vitro maturation, the oocytes with sperms were exposed in in vitro fertilization (IVF) medium supplemented with Humulus japonicus extract (0.01, 0.05, $0.1{\mu}g/mL$, respectively) for 1 day. In our results, exposure of IVF medium to Humulus japonicus extract did not affect sperm motility and percentage of penetrated oocytes but ROS intensity was significantly decreased by $0.01{\mu}g/mL$ compared with other groups (p< 0.05). Moreover, treatment with $0.01{\mu}g/mL$ of Humulus japonicus extract was higher the frequency of blastocyst formation than the any other groups (p<0.05). Otherwise, treatment with $0.01{\mu}g/mL$ of Humulus japonicus extract not increased the total cell number but reduced apoptotic-positive nuclei number. In conclusion, our results indicate that supplementation of Humulus japonicus extract in IVF medium may have important implications for improving early embryonic development in bovine embryos.

Nanopharmaceutical Approach for Enhanced Anti-cancer Activity of Betulinic Acid in Lung-cancer Treatment via Activation of PARP: Interaction with DNA as a Target -Anti-cancer Potential of Nano-betulinic Acid in Lung Cancer-

  • Das, Jayeeta;Samadder, Asmita;Das, Sreemanti;Paul, Avijit;Khuda-Bukhsh, Anisur Rahman
    • 대한약침학회지
    • /
    • 제19권1호
    • /
    • pp.37-44
    • /
    • 2016
  • Objectives: This study examined the relative efficacies of a derivative of betulinic acid (dBA) and its poly (lactide-co-glycolide) (PLGA) nano-encapsulated form in A549 lung cancer cells in vivo and in co-mutagen [sodium arsenite (SA) + benzo[a]pyrene (BaP)]-induced lung cancer in mice in vivo. Methods: dBA was loaded with PLGA nanoparticles by using the standard solvent displacement method. The sizes and morphologies of nano-dBA (NdBA) were determined by using transmission electron microscopy (TEM), and their intracellular localization was verified by using confocal microscopy. The binding and interaction of NdBA with calf thymus deoxyribonucleic acid (CT-DNA) as a target were analyzed by using conventional circular dichroism (CD) and melting temperature (Tm) profile data. Apoptotic signalling cascades in vitro and in vivo were studied by using an enzyme-linked immunosorbent assay (ELISA); the ability of NdBA to cross the blood-brain barrier (BBB) was also examined. The stage of cell cycle arrest was confirmed by using a fluorescence-activated cell-sorting (FACS) data analysis. Results: The average size of the nanoparticles was ~ 110 nm. Confocal microscopy images confirmed the presence of NdBA in the cellular cytoplasm. The bio-physical properties of dBA and NdBA ascertained from the CD and the Tm profiles revealed that NdBA had greater interaction with the target DNA than dBA did. Both dBA and NdBA arrested cell proliferation at G0/G1, NdBA showing the greater effect. NdBA also induced a greater degree of cytotoxicity in A549 cells, but it had an insignificant cytotoxic effect in normal L6 cells. The results of flow cytometric, cytogenetial and histopathological studies in mice revealed that NdBA caused less nuclear condensation and DNA damage than dBA did. TEM images showed the presence of NdBA in brain samples of NdBA fed mice, indicating its ability to cross the BBB. Conclusion: Thus, compared to dBA, NdBA appears to have greater chemoprotective potential against lung cancer.

Flavonoids from Orostachys Japonicus A. Berger Induces Caspase-dependent Apoptosis at Least Partly through Activation of p38 MAPK Pathway in U937 Human Leukemic Cells

  • Lee, Won Sup;Yun, Jeong Won;Nagappan, Arulkumar;Jung, Ji Hyun;Yi, Sang Mi;Kim, Dong Hoon;Kim, Hye Jung;Kim, GonSup;Ryu, Chung Ho;Shin, Sung Chul;Hong, Soon Chan;Choi, Yung Hyun;Jung, Jin-Myung
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권2호
    • /
    • pp.465-469
    • /
    • 2015
  • Background: Orostachys japonicus A. Berger (A. Berger) is commonly used as a folk remedy for cancer therapy. However, the mechanisms of its anti-cancer activity are poorly investigated in human cancer cells. In this study, we investigated whether flavonoids extracted from Orostachys japonicus A. Berger (FEOJ) might have anticancer effects in human leukemia cells, focusing on cell death mechanisms. Materials and Methods: U937 human leukemic cancer cells were used. Results: FEOJ induced apoptosis in a dose-dependent manner in human U937 cancer cells. Flow cytometry revealed significant accumulation of cells with sub-G1 DNA content at the concentrations of $200{\mu}g/mL$ and $400{\mu}g/mL$. FEOJ-induced apoptosis was caspase-dependent through loss of mitochondrial membrane potential (MMP, ${\Delta}{\Psi}m$) in human U937 cancer cells, which might be associated with suppression of Bcl-2 and XIAP proteins. FEOJ induced the p38 MAPK signaling pathway, playing at least in part an important role in FEOJ-induced apoptosis. Conclusions: This study suggested that FEOJ may induce caspase-dependent apoptosis in human leukemic cells by regulating MMP (${\Delta}{\Psi}m$) through suppressing Bcl-2 and X-IAP. In addition, the results indicated that upstream p38 MAPK signaling regulates the apoptotic effect of FEOJ. This study provides evidence that FEOJ might have anti-cancer potential for human leukemic cells.

수지상세포 활성화를 위한 세포투과 펩타이드가 결합된 재조합 전립성 산성 인산분해효소의 정제 (Purification of Recombinant CTP-Conjugated Human prostatic acid phosphatase for activation of Dendritic Cell)

  • 이기완;류강
    • KSBB Journal
    • /
    • 제24권1호
    • /
    • pp.80-88
    • /
    • 2009
  • glandular kallikrein에 광범위한 상동성을 가지는 인간 전립성 산성 인산 가수분해 효소는, 전립선암의 대표적인 혈청 biomarkers이다. 수지상세포는 유력한 항원 제시 세포이며, 바이러스, 미생물 병원체 및 종양에 대하여 면역 계통에서 강력한 T 세포 응답을 유도할 수 있다. 따라서, 종양 특이적인 항원으로 감작된 수지상세포를 이용한 면역요법은 anti-tumor 면역 유도를 위한 강력한 방법중의 하나이다. 크레아젠(주)에서 개발된 CTP (세포막 투과성 펩티드) 기술은 세포 내로의 높은 침투 효율성을 가지며 핵산이나 단백질과 같은 생체 고분자 물질을 접합하여 세포내로 수송할 수 있는 기술이다(36). 하지만 활성형의 인간 전립성 산성 인산 가수분해 효소는 세포사멸을 매개할 수 있기 때문에, 본 연구진은 항암 치료용 백신으로의 수지상세포 감작을 위해 비활성형 형태의 다중체 (multimer) 항원을 개발하였다. 본 연구에서, 수지상 세포의 감작과 활성화에 안전하고 효율적인 다중체 형태 (multimeric form)의 세포막 투과성 펩티드가 융합된 인간 전립성 산성 인산 가수분해 효소를 얻기 위한 정제공정을 기법을 개발하였고 젤 여과 크로마토그래피, western blot과 Dynamic Light Scattering을 이용하여 확인하였다. 아울러, 정제된 다중체 형태 (multimeric form)의 세포막 투과성 펩티드가 융합된 인간 전립성 산성 인산 가수분해 효소는 수지상 세포의 감작시 세포질 내로 효과적으로 침투되었다. 결과적으로 세포의 사멸의 부작용이 없이 MHC class I 분자를 통해 수지상세포의 표면으로 효과적으로 제시되었다.

Anti-Inflammatory Effect of Ixeris dentata on Ultraviolet B-Induced HaCaT Keratinocytes

  • Kim, Sung-Bae;Kang, Ok-Hwa;Keum, Joon-Ho;Mun, Su-Hyun;An, Hyun-Jin;Jung, Hyun-Ju;Hong, Seung-Heon;Jeong, Dong-Myong;Kweon, Kee-Tae;Kwon, Dong-Yeul
    • Natural Product Sciences
    • /
    • 제18권1호
    • /
    • pp.60-66
    • /
    • 2012
  • Human skin is the first line of defense for the protection of the internal organs of the body from different stimuli. Ultraviolet B (UVB) irradiation induces skin damage and inflammation through the secretion of various cytokines, which are immune regulators produced by cells. To prevent the initiation of skin inflammation, keratinocytes that have been irreversibly damaged by radiation must be removed through the apoptotic mechanism. Ixeris dentata (family: Asteraceae) is a perennial medicinal herb indigenous to Korea. It has been used in Korea, China, and Japan to treat in digestion, pneumonia, diabetes, hepatitis, and tumors. To gain insight into the anti-inflammatory effects of I. dentata, we examined its influence on UVB-induced pro-inflammatory cytokine production in human keratinocytes (HaCaT cells), by observing cells that were stimulated with UVB in the presence or absence of I. dentata. In the present study, pro-inflammatory cytokine production was determined by performing enzyme-linked immunosorbent assay, reverse transcription polymerase chain reaction, and western blot analysis to measure the activation of mitogen-activated protein kinase (MAPKs). I. dentata inhibited UVBinduced production of the pro-inflammatory cytokine interleukin (IL)-6 in a dose-dependent manner. Further, I. dentata inhibited the UVB-induced expression of cyclooxygenase (COX)-2. Furthermore, I. dentata inhibited the phosphorylation of c-Jun NH2-terminal kinase and p38 MAPKs, suggesting that it inhibits the secretion of the pro-inflammatory cytokines IL-6 and IL-8, and COX-2 expression, by blocking MAPK phosphorylation. These results suggest that I. dentate can potentially protect against UVB-induced skin inflammation.

Glutamate로 유도된 C6 glial 세포 자멸사에 대한 청심연자음(淸心蓮子飮)의 보호효과 (Protective Effects of Chungsimyeonja-eum on Glutamate-induced Apoptosis in C6 Glial Cells)

  • 고석재;신용진;장원석;하예진;이선아;안민섭;권오상;신선호
    • 대한한방내과학회지
    • /
    • 제31권1호
    • /
    • pp.54-65
    • /
    • 2010
  • Objective : The water extract of Chungsimyeonja-eum (CSYJE) has traditionally been used in treatments of heart diseases and brain diseases in Oriental medicine. However, little is known about the mechanism by which CSYJE protects neuronal cells from injury damages. Therefore, in this study we attempted to elucidate the mechanism of the cytoprotective effect of the CSYJE extract on glutamate-induced C6 glial cell death. Methods : Cultured cells were pretreated with CSYJE and exposed to glutamate, cell damage was assessed by using MTT assay and propidium iodide (PI), probe 2',7'-dichlorofluorescein diacetate (DCF-DA) staining. Western blotting was performed using anti-procaspase-3 and anti-PARP, respectively. Result : We determined the elevated cell viability by CSYJE extract on glutamate-induced C6 glial cell death. Glutamate induced DNA fragmentation on C6 glial cells but pre-treatment with CSYJE inhibited DNA fragmentation. One of the main mediators of glutamate-induced cytotoxicity was known to generation of reactive oxygen species (ROS). Pre-treatment with CSYJE inhibited this ROS generation from glutamate-stimulated C6 glial cells. Also, we identified that the ROS-induced DCF-DA green fluorescence was reduced by CSYJE pre-treatment. The critical markers of apoptotic cell death are the cleavages of procaspase-3 protease and PARP proteins, so we checked the expression level and cleavages of procaspase-3 protease and PARP proteins. Glutamate-treated C6 glial cells showed the cleavages of procaspase-3 protease and PARP proteins and followed the reduction of expression of these proteins. Conclusion : These findings indicate that CSYJE may prevent cell death from glutamate-induced C6 glial cell death by inhibiting the ROS generation and procaspase-3 and PARP expression.

Anti-proliferative Activities of Metallic Nanoparticles in an in Vitro Breast Cancer Model

  • Loutfy, Samah A;Al-Ansary, Nadia A;Abdel-Ghani, Nour T;Hamed, Ahmed R;Mohamed, Mona B;Craik, James D;Eldin, Taher A. Salah;Abdellah, Ahmed M;Hussein, Yassmein;Hasanin, MTM;Elbehairi, Serag Eldin I
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권14호
    • /
    • pp.6039-6046
    • /
    • 2015
  • Aims: To investigate effect of metallic nanoparticles, silver (AgNPs) and gold nanoparticles (AuNPs) as antitumor treatment in vitro against human breast cancer cells (MCF-7) and their associated mechanisms. This could provide new class of engineered nanoparticles with desired physicochemical properties and may present newer approaches for therapeutic modalities to breast cancer in women. Materials and Methods: A human breast cancer cell line (MCF-7) was used as a model of cells. Metallic nanoparticles were characterized using UV-visible spectra and transmission electron microscopy (TEM). Cytotoxic effects of metallic nanoparticles on MCF-7 cells were followed by colorimetric SRB cell viability assays, microscopy, and cellular uptake. Nature of cell death was further investigated by DNA analysis and flow cytometry. Results: Treatment of MCF-7 with different concentrations of 5-10nm diameter of AgNPs inhibited cell viability in a dose-dependent manner, with IC50 value of $6.28{\mu}M$, whereas treatment of MCF-7 with different concentrations of 13-15nm diameter of AuNPs inhibited cell viability in a dose-dependent manner, with IC50 value of $14.48{\mu}M$. Treatment of cells with a IC50 concentration of AgNPs generated progressive accumulation of cells in the S phase of the cell cycle and prevented entry into the M phase. The treatment of cells with IC50 concentrations of AuNPs similarly generated progressive accumulation of cells in sub-G1 and S phase, and inhibited the entrance of cells into the M phase of the cell cycle. DNA fragmentation, as demonstrated by electrophoresis, indicated induction of apoptosis. Conclusions: Our engineered silver nanoparticles effectively inhibit the proliferation of human breast carcinoma cell line MCF-7 in vitro at high concentration ($1000{\mu}M$) through apoptotic mechanisms, and may be a beneficial agent against human carcinoma but further detailed study is still needed.

Anti-Proliferation Effects and Molecular Mechanisms of Action of Tetramethypyrazine on Human SGC-7901 Gastric Carcinoma Cells

  • Ji, Ai-Jun;Liu, Sheng-Lin;Ju, Wen-Zheng;Huang, Xin-En
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권8호
    • /
    • pp.3581-3586
    • /
    • 2014
  • Aim: To investigate the effects of tetramethypyrazine (TMP) on proliferation and apoptosis of the human gastric carcinoma cell line 7901 and its possible mechanism of action. Methods: The viability of TMP-treated 7901 cells was measured with a 3-(4, 5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide assay (MTT) and cell apoptosis was analyzed by flow cytometry. The distribution of cells in different phases of cell cycle after exposure of TMPs was analyzed with flow cytometry. To investigate the molecular mechanisms of TMP-mediated apoptosis, the expression of NF-${\kappa}Bp65$, cyclinD1 and p16 in SGC-7901 cells was analyzed by reverse transcription-polymerase chain reaction (RT-PCR) and western blotting. Results: TMP inhibited the proliferation of human gastric carcinoma cell line 7901 in dose and time dependent manners. Cell growth was suppressed by TMP at different concentrations (0.25, 0.5, 1.0, 2.0 mg/ml), the inhibition rate is 0.46%, 4.36%, 14.8%, 76.1% (48h) and 15.5%, 18.5%, 41.2%, 89.8% (72h) respectively. When the concentration of TMPs was 2.0mg/ml, G1-phase arrest in the SGC-7901 cells was significant based on the data for cell cycle distribution. RT-PCR demonstrated that NF-${\kappa}Bp65$ and cyclin D1 mRNA expression was significantly down-regulated in 7901 cells treated with 2.0 mg/ml TMP for 72h (p<0.05), while the p16 mRNA level was up-regulated (p<0.05). The protein expression of NF-${\kappa}Bp65$ and cyclin D1 decreased gradually with the increase in TMP concentration, compared with control cells (p<0.05), while expression of protein p16 was up-regulated (p<0.01). Conclusion: TMP exhibits significant anti-proliferative and pro-apoptotic effects on the human gastric carcinoma cell line SGC-7901. NF-${\kappa}Bp65$, cyclinD1 and p16 may also play important roles in the regulation mechanisms.