• Title/Summary/Keyword: Anti-Swing Controller

Search Result 30, Processing Time 0.029 seconds

Design of a Fuzzy Controller for Position Control and Anti-Swing in Container Crane Systems Using Genetic Algorithms (유전알고리즘을 이용한 컨테이너 크레인 시스템의 위치제어 및 흔들림 억제를 위한 퍼지 제어기 설계)

  • 정형환;허동렬;오경근;주석민;안병철
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.53-60
    • /
    • 2000
  • In this paper, we design a GA-fuzzy controller for position control and anti-swing at the destination point. A genetic algorithm is used to complement the demerits such as the difficulty of the component selection of the fuzzy controller, namely, scaling factors, membership functions and control rules. Lagrange equation is used to represent the motion equation of trolley and load in order to obtain mathematical modelling. Simulation results show that the proposed control technique is superior to a conventional optimal control in destination point moving and modification.

  • PDF

A Design of Anti-sway Controller for Container Crane (컨테이너 크레인의 흔들림 억제 제어기 설계)

  • Son, J.K.;Kwon, S.J.;Park, H.S.
    • Journal of Power System Engineering
    • /
    • v.7 no.1
    • /
    • pp.51-59
    • /
    • 2003
  • The recent amount of container freight continuously has been increased, but the low efficiency of container crane causes jamming frequently in transportation and cargo handling at port. It is required that the working velocity and safety are improved by control of moving the trolley as quick as possible without large overshoot and any residual swing motion of container at the destination. In this paper, a LQ Fuzzy controller for a container crane is proposed to accomplish an optimal design of improved control system for minimizing the swing motion at destination. In this scheme a mathematical model for the system is obtained in state space form. Finally, the effectiveness of the proposed controller is verified through computer simulation.

  • PDF

Design of GA-Fuzzy Controller for Position Control and Anti-Swing in Container Crane (컨테이너 크레인의 위치제어 및 흔들림 억제를 위한 GA-퍼지 제어기 설계)

  • 허동렬
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2000.05a
    • /
    • pp.16-21
    • /
    • 2000
  • In this paper we design a GA-fuzzy controller for position control and anti-swing at the destination point. Applied genetic algorithm is used to complement the demerit such as the difficulty of the component selection of fuzzy controller namely scaling factor membership function and control rules. lagrange equation is used to represent the motion equation of trolley and load in order to obtain mathematical modelling. Simulation results show that the proposed control technique is superior to a conventional optimal control in destination point moving and modification.

  • PDF

Anti-sway and 3D position Control of the Nonlinear Crane System using Fuzzy Algorithm (퍼지 알고리즘을 이용한 비선형 크레인 시스템의 진동방지 및 3차원 위치제어)

  • Lee, Tae-Young;Lee, Sang-Ryong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.8
    • /
    • pp.193-202
    • /
    • 1999
  • Crane operation for transporting heavy loads causes swinging motion at the loads due to crane's acceleration and deceleration. This sway causes the suspension ropes to leave their grooves and leads to possibility of serious damages. So, this swing of the objects is a serious problem and the goal of crane system is transporting to a goal position as soon as possible without the oscillation of the rope. Generally crane is operated by expert's knowledge. Therefore, a satisfactory control method to supress object sway during transport is indispensible. The dynamic behavior of the crane shows nonlinear characteristics. when the length of the rope is changed the crane is time varying system and the design of anti-sway controller is very difficult. In this paper, the nonlinear dynamic model for the industrial overhead crane whose girder, trolley and hoister move simultaneously is derived. and the Fuzzy logic controller based on the expert experiments during acceleration, constant velocity, deceleration and stop position period is proposed to supress the swing motion and control the position of the crane. The performance of the fuzzy controller for the nonlinear crane model is simulated on the personal computer.

  • PDF

A study on design of a fuzzy controller and a simulator for development of controller for reducing vibration in overhead crane (천정 크레인의 진동 저감을 위한 퍼지제어기 및 제어기 개발용 시뮬레이터 설계에 관한 연구)

  • Jeong, kyung-Chae;Hong, Jin-Cheol;Bae, Jin-Ho;Lee, Dal-Hae;Lee, Suck-Gyu;Lee, Hai-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.2
    • /
    • pp.96-101
    • /
    • 1996
  • In this paper, a simulator is designed along with S/W package for crane controllers. Due to trolley's acceleration or deceleration, cranes inherently cause swing motion of the objects in transporting heavy objects. This swing not only deteriorates the crane handling safety but also increases the processing time. To overcome these drawbacks, the fuzzy rule-based simulator is developed with inhibitory swing at final action. The computer simulation shows that the swing at initial and final positions is removed fast with small position error. The proposed simulator can be used for handling object stabley and the study of effectiveness in unmanned operation of cranes.

  • PDF

Anti-swing and Position Control of Crane Using Intelligent Technique (지능제어를 이용한 크레인의 진동 및 위치 제어에 관한 연구)

  • Lee, Eun-Gyung;Lee, Suk
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.524-527
    • /
    • 1995
  • In most cases, a crane is controlled by an open-loop technique. That is, the controller tries to follow a given velocity profile that is designed to minimize the swing of rope and the transfer time. But such a system is not capable of handling various disturbances such as changing rope length and wind effect. In order to overcome this kind of difficulty, this research focuses on the design of a feedback controller using intelligent techniques such as fuzzy logic and neural network. These intelligent techniques has been emplyoyed in order to represent human knowledge and to imitate human learning. The deveped controllers have been evaluated via computer simulation

  • PDF

Position Control of the Trolley and Spreader Using Pole-placement Method (극점배치기법을 이용한 트롤리 및 스프레더의 위치제어)

  • Lee, Tae-Young;Kim, Myun-Hee;Choi, Won-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.2 no.2
    • /
    • pp.165-172
    • /
    • 1999
  • Crane operation for transporting heavy loads causes swinging motion at the loads. This sway causes the suspension ropes to leave their grooves and leads to possibility of serious damages. Generally crane is operated by expert's knowledge. Therefore, a satisfactory control method to supress object sway during transport is indispensible. The dynamic behavior of the crane shows nonlinear characteristics. when the length of the rope is changed the crane is time varying system and the design of anti-sway controller is very difficult. In this paper, the nonlinear dynamic model for the industrial overhead crane is derived. and the feedback gain matrix based on the pole-placement method is proposed to supress the swing motion and control the position of the crane. The performance of the controller for the crane model is simulated on the personal computer.

  • PDF

A Development of Anti-sway System for Real Application: Measurement and Control of Crane Motions Using Camera (실용화를 고려한 Anti-Sway 시스템 구축: 카메라를 이용한 크레인 운동 계측 및 제어)

  • Kawai, Hideki;Kim, Young-Bok;Choe, Yong-Woon;Yang, Joo-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.90-96
    • /
    • 2008
  • In general, the swing motions of a crane are controlled and suppressed by controlling the trolley motion. In many of our previous studies, we suggested a new type of anti-sway control system for a crane. In this proposed control system, a small auxiliary mass (moving-mass) is installed on the spreader and moving this auxiliary mass controls tire swing motion. The actuator reaction against the auxiliary mass applies inertial control forces to the container in order to reduce the swing motion in the desired manner. However, measuring systems based on a laser sensor or other means are not veryuseful in real-worldapplications. So, in this paper, animage sensor is used to measure the motions of the spreader and the measured data are fed back to the controller in real time. The applied image processing technique is a kind of robust template matching method called Vector Code Correlation (VCC), which was devised to consider real environmental conditions. The H $\infty$ based control technique is applied to suppress the swing motion of the crane. Experimental results showed that the proposed measurement and control system based on an image sensor is useful and robust to disturbances.

Anti-sway and Position 3D Control of the Nonlinear Crane System using Fuzzy Algorithm

  • Lee, Tae-Young;Lee, Sang-Ryong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.1
    • /
    • pp.66-75
    • /
    • 2002
  • The crane operation used fur transporting heavy loads causes a swinging motion with the loads due to the crane\`s acceleration and deceleration. This sway causes the suspension ropes to leave their grooves and can cause serious damage. Ideally, the purpose of a crane system is to transport loads to a goal position as soon as possible without any oscillation of the rope. Currently, cranes are generally operated based on expert knowledge alone, accordingly, the development of a satisfactory control method that can efficiently suppress object sway during transport is essential. The dynamic behavior of a crane shows nonlinear characteristics. When the length of the rope is changed, a crane becomes a time-varying system thus the design of an anti-sway controller is very difficult. In this paper, a nonlinear dynamic model is derived for an industrial overhead crane whose girder, trolley, and hoister move simultaneously. Furthermore, a fuzzy logic controller, based on expert experiments during acceleration, constant velocity, deceleration, and stop position periods is proposed to suppress the swing motion and control the position of the crane. Computer simulation is then used to test the performance of the fuzzy controller with the nonlinear crane model.

Measurement and Control of Swing Motion Using Image Sensor (이미지 센서를 이용한 크레인의 흔들림 계측 및 제어)

  • Kim, Y.B.;Kawai, H.;Choi, Y.W.;Lee, K.S.;Chae, G.H.
    • Journal of Power System Engineering
    • /
    • v.11 no.4
    • /
    • pp.103-108
    • /
    • 2007
  • In general, the swing motion of the crane is controlled and suppressed by activating the trolley motion. In many papers reported by us, we suggested a new type of anti-sway control system of the crane. In the proposed control system, a small auxiliary mass(moving-mass) is installed on the spreader and the swing motion is controlled by moving the auxiliary mass. The actuator reaction against the auxiliary mass applies inertial control forces to the container in order to reduce the swing motion in the desired manner. The measuring system is based on laser sensor or others. However it is not so useful in real world. Especially, in this paper, the image sensor is used to measures the motions of the spreader and the measured data are fed back to the controller in real time. The applied image processing technique is a kind of robust template matching method which is named Vector Code Correlation (VCC) and devised to consider the real environmental conditions. And the $H_{\infty}$ based control technique is applied to suppress swing motion of the crane. And the experimental result shows that the proposed measurement system based on image sensor and control system is useful and robust to disturbances.

  • PDF