• Title/Summary/Keyword: Anti-Icing Spray System

Search Result 3, Processing Time 0.019 seconds

Prioritization of Anti-Icing Spray System for Active Snow-Removal Works (능동적 제설작업을 위한 염수분사장치 설치 우선순위 선정)

  • Yang, Choong Heon;Kim, In Su
    • International Journal of Highway Engineering
    • /
    • v.17 no.4
    • /
    • pp.99-105
    • /
    • 2015
  • PURPOSES: This study aims to establish the priority of introducing anti-icing spray system for regions of the National Highways in South Korea. Using this study, a logical plan for instituting such an anti-icing spray system can be established for the National Highways. METHODS : The Analytical Hierarchy Process (AHP) was employed to prioritize the implementation of an anti-icing spray system on Korean highways. For this purpose, an existing scoring table developed by the Ministry of Land, Infrastructure Transport Affair was slightly modified in order to reflect recent trends in winter maintenance. A survey was conducted to gather the preferences regarding the developed hierarchy of road experts and agencies. Finally, the final score was produced by integrating the scoring results with estimated weights for each evaluation criterion. RESULTS: In general, Honam and the metropolitan areas have relatively high priority while other areas such as Chungcheong, Young Nam, and Gang Won appear to be uniform in importance in terms of establishing an anti-icing spray system. This result may indicate that historical weather data and traffic volumes are significant factors in deciding in winter maintenance polices CONCLUSIONS : In this study, useful insights are suggested regarding winter maintenance by simultaneously performing rapid snow removal and proactive treatment. Issues of resource allocation may be potential research items in the field transportation engineering.

Icing Characteristics in Liquid-Phase Injection of LPG Fuel (액상분사식 LPG 인젝터의 아이싱 생성 특성 및 억제 방법)

  • Lee, Sun-Youp;Kim, Chang-Up;Choi, Kyo-Nam;Kang, Kern-Yong
    • Journal of ILASS-Korea
    • /
    • v.14 no.4
    • /
    • pp.147-152
    • /
    • 2009
  • Since a liquid-phase LPG injection system allows accurate control of fuel injection and increase in volumetric efficiency, it has advantages in achieving higher engine power and lower emissions compared to the mixer type LPG supplying system. However, this system also leads to an unexpected event called icing phenomenon which occurs when moisture in the air near the injector freezes and becomes frost around the nozzle hole due to extraction of heat from surrounding caused by instant fuel vaporization. As a result, it becomes difficult to control air/fuel ratio in engine operation, inducing exacerbation of engine performance and HC emission. One effort to mitigate icing phenomenon is to attach anti-icing injection tip in the end of nozzle. Therefore, in this study, the effect of engine operation parameters as well as surrounding conditions on icing phenomenon was investigated in a bench test rig with commercially-used anti-icing injection tips. The test results show that considerable ice was deposited on the surface near the nozzle hole of the anti-icing tip in low rpm and low load operating conditions in ambient air condition. This is because acceleration of detachment of deposited ice from the tip surface was induced in high load, high rpm conditions, resulting in decrease in frost accumulation. The results of the bench testing also demonstrate that little or no ice was formed at surrounding temperature below a freezing point since the absolute amount of moisture contained in the intake air is too small in such a low temperature.

  • PDF

A Study of Droplets and Icing Characteristics on Injector in a Liquid Phase LPG Injection Engine (액상분사식 LPG엔진 인젝터의 후적 및 아이싱 특성에 관한 연구)

  • Kim, Chang-Up;Choi, Kyo-Nam;Kang, Kern-Yong;Park, Cheol-Woong
    • Journal of ILASS-Korea
    • /
    • v.12 no.1
    • /
    • pp.38-44
    • /
    • 2007
  • Since the Liquid Phase LPG injection (LPLI) system has Advantages in power generation and emission characteristics compared to the mixer-type fuel-supply system, a variety of studies regarding LPLi system has been conducted and its applications are made in automobile industry. However, the heat extraction due to the evaporation of liquid fuel, causes not only a post-accumulation of fuel but also an icing phenomenon which is a frost of moisture in the air around the nozzle tip. Since there exists a difficulty in the accurate control of air fuel ratio in both fuel supply systems, it can result in poor engine performance and a large amount of harmful emissions. This research examines the characteristics of icing phenomenon and develops anti-icing bushing to prevent an icing on the surface of the injection tip. It was found that n-butane, which has a relatively high boiling point ($-0.5^{\circ}C$), was a main species of post-accumulation. Also the results show that the post-accumulation problem was allevaited the utilization of a large inner to outer bore ratio and smooth surface roughness. In addition, an icing phenomenon and its formation process were found to be mainly affected by the humidity and the temperature of inlet air in an inlet duct. Also, it was observed that an icing phenomenon is lessened using aluminum bushing whose end coincides with the end of fuel injection tip in length.

  • PDF