• Title/Summary/Keyword: Anti-Collision

Search Result 231, Processing Time 0.032 seconds

A Study of Anti-collision algorithm based on RFID for Medical Service (의료 서비스를 위한 RFID 기반 충돌방지 알고리즘에 관한 연구)

  • Park, Joo-Hee;Park, Yong-Min
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2006.11a
    • /
    • pp.434-437
    • /
    • 2006
  • Today, Hospital Information System that integrates ubiquitous technologies are introduced in limited basis due to problems like standardization and limits on medical use, where responsibilities lie, legal safeguard on transmission, invasion of privacy etc. Particularly, problems like absence of tag design suitable for medical environment, compatibility issue with previous medical information system. In order to solve such problems, we have designed medical tags for the first time that are consistent with future ubiquitous environment by deciding on medically suitable field with 96bit tag offered by EFC as its base. Second, improving on previous multi-tag recognizing crash prevention algorithm, we have designed a priority anti-collision algorithm that reflects priorities on the needs in medical environment.

  • PDF

Development of a FMCW Radar Using a Compensation Algorithm for VCO Nonlinearity (VCO 비선형 보상 알고리듬을 적용한 근거리 측정용 FMCW 레이더 개발)

  • Chun, Joong Chang;Lee, Hyun Soo;Sohn, Jong Yoon;Kim, Tae Soo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.19 no.1
    • /
    • pp.25-30
    • /
    • 2014
  • In this paper, we have implemented an FMCW radar for a near distance measurement. In the structure of the FMCW radar, it is a key problem to solve the VCO nonlinearity. In this work, we have adopted a VCO nonlinearity compensation algorithm using the spectrum correlation of beat signals. The radar experimented in this work uses an X-band(9.55~10.25GHz) microwave signal, and realizes precision of 3% in the range of 30m. The prototype can be applied to the front surveillance radar such as in vehicle anti-collision and probing robot mission.

An Anti-Collision System for Vessels Based on Smartphone (스마트폰 기반의 선박 충돌방지 시스템)

  • Cho, Hong-Rae;Lee, Sung-Jong;Park, Jang-Sik;Kim, Hyun-Tae;Yu, Yun-Sik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.470-471
    • /
    • 2011
  • As the increase in maritime traffic and leisure, the marine accident risk has increased in the domestic coast. In this paper, we propose an anti-collision system between vessels using the shortest distance and the time to reach the distance in maritime. the shortest distance and the time to reach the distance calculated with vector analysis using AIS information, a prototype is implemented for smartphone application.

  • PDF

A Scheme to Optimize Q-Algorithm for Fast Tag Identification (고속 태그 식별을 위한 Q-알고리즘 최적화 방안)

  • Lim, In-Taek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.12
    • /
    • pp.2541-2546
    • /
    • 2009
  • In the anti-collision scheme proposed by EPCglobal Class-1 Gen-2 standard, the frame size for a query round is determined by Q-algorithm. In the Q-algorithm, the reader calculates a frame size without estimating the number of tags in it's identification range. It uses only the slot status. Therefore, the Q-algorithm has advantage that the reader's algorithm is simpler than other DFSA algorithms. However, the standard does not define an optimized parameter value for adjusting the frame size. In this paper, we propose the optimized parameter values for minimizing the identification time by various computer simulations.

Optimal Frame Size Allocation Mechanism for Fast Tag Identification in RFID System (RFID 시스템에서 고속 태그 식별을 위한 최적의 프레임 크기 할당 기법)

  • Lim, In-Taek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.9
    • /
    • pp.1569-1574
    • /
    • 2008
  • Almost all the RFID systems in the 13.56MHz ISM band adopt the FSA algorithm as the anti-collision algorithm. The FSA algorithm is based on the slotted ALOHA with a fixed frame size. The FSA, though simple, has a disadvantage that when the number of tags is variable, the system performance degrades because of the fixed frame size. Therefore, this paper proposes a new OFSA. The proposed OFSA algorithm dynamically allocates the optimal frame size at every frame based on the number of tags in the reader's identification range. According to the simulation results, the system efficiency of the proposed algorithm should be maintained optimally. Also, the proposed algorithm always obtained the minimum tag identification delay.

A Study on Optimization Problem based on RFID Reader-to-reader Interference Model and Genetic-resource Allocation Technique (RFID 리더간 간섭 모델에 기반 한 최적화 문제와 유전적 자원할당 기법에 관한 연구)

  • Seo, Hyun-Sik;Lee, Chae-Woo
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.4
    • /
    • pp.51-60
    • /
    • 2009
  • In radio frequency identification(RFID) systems, when an RFID reader uses the same or adjacent frequency with neighbor readers, the interference between the readers may occur, which causes the reader collision and errors in tag recognition. In the previous study on RFID reader anti-collision, the techniques based on Frequency Division Mutiplex(FDM) or Time Division Multiplex(TDM) are proposed. However in these paper, the problem on the condition of RFID reader-to-reader interference considering the distance between interfering readers, frequency and operating time is not define exactly. In this paper, the interference effect is analyzed through RFID reader interference model considering the TDM and FDM, and the optimization problem is defined. To solve this, genetic-resource allocation technique is proposed. Therefore the optimal resource allocation applied RFID environment faithfully is accomplished.

Precise-Optimal Frame Length Based Collision Reduction Schemes for Frame Slotted Aloha RFID Systems

  • Dhakal, Sunil;Shin, Seokjoo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.1
    • /
    • pp.165-182
    • /
    • 2014
  • An RFID systems employ efficient Anti-Collision Algorithms (ACAs) to enhance the performance in various applications. The EPC-Global G2 RFID system utilizes Frame Slotted Aloha (FSA) as its ACA. One of the common approaches used to maximize the system performance (tag identification efficiency) of FSA-based RFID systems involves finding the optimal value of the frame length relative to the contending population size of the RFID tags. Several analytical models for finding the optimal frame length have been developed; however, they are not perfectly optimized because they lack precise characterization for the timing details of the underlying ACA. In this paper, we investigate this promising direction by precisely characterizing the timing details of the EPC-Global G2 protocol and use it to derive a precise-optimal frame length model. The main objective of the model is to determine the optimal frame length value for the estimated number of tags that maximizes the performance of an RFID system. However, because precise estimation of the contending tags is difficult, we utilize a parametric-heuristic approach to maximize the system performance and propose two simple schemes based on the obtained optimal frame length-namely, Improved Dynamic-Frame Slotted Aloha (ID-FSA) and Exponential Random Partitioning-Frame Slotted Aloha (ERP-FSA). The ID-FSA scheme is based on the tag set estimation and frame size update mechanisms, whereas the ERP-FSA scheme adjusts the contending tag population in such a way that the applied frame size becomes optimal. The results of simulations conducted indicate that the ID-FSA scheme performs better than several well-known schemes in various conditions, while the ERP-FSA scheme performs well when the frame size is small.