• Title/Summary/Keyword: Anti-Cancer Drug

Search Result 526, Processing Time 0.026 seconds

Recent advances in utilization of photochemical internalization (PCI) for efficient nano carrier mediated drug delivery

  • Park, Wooram;Park, Sin-Jung;Lee, Jun;Na, Kun
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.2 no.1
    • /
    • pp.1-13
    • /
    • 2015
  • Despite recent progresses in nanoparticle-based drug delivery systems, there are still many unsolved limitations. Most of all, a major obstacle in current nanoparticle-based drug carrier is the lack of sufficient drug delivery into target cells due to various biological barriers, such as: extracellular matrix, endolysosomal barrier, and drug-resistance associated proteins. To circumvent these limitations, several research groups have utilized photochemical internalization (PCI), an extension of photodynamic therapy (PDT), in design of innovative and efficient nano-carriers drug delivery. This review presents an overview of a recent research on utilization of PCI in various fields including: anti-cancer therapy, protein delivery, and tissue engineering.

Characterization of Lactobacillus cellobiosus D37 Isolated from Soybean Paste as a Probiotic with Anti-Cancer and Antimicrobial Properties

  • Lim, Sung-Mee;Lee, Goon-Ja;Park, Sun-Mee;Ahn, Dong-Hyun;Im, Dong-Soon
    • Food Science and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.792-798
    • /
    • 2006
  • The probiotic characteristics of a total of 137 lactic acid bacterial strains isolated from soybean paste were investigated. Among those tested, the D37 strain was selected as a probiotic bacteria due to its acid and bile tolerance, and its strong anti-cancer and antibacterial activities. The D37 strain showed highly stable viability at acidic pH for 2 hr, and was very stable in 10% bovine bile. The viability of human colon cancer HT-29 cells was inhibited more than 60% at a $200\;{\mu}/mL$ concentration of D37 cell-free culture supernatant, and the degree of inhibition was concentration-dependent. The D37 strain showed a wide range of antibacterial activities against food-borne pathogenic bacteria such as Escherichia coli O157, Listeria spp., Vibrio spp., Salmonella spp., and Staphylococcus aureus. According to phenotypic characteristics and the utilization of various sugars, the D37 strain was identified as Lactobacillus cellobiosus.

Oral and IV Dosages of Doxorubicin-Methotrexate loaded-Nanoparticles Inhibit Progression of Oral Cancer by Down-Regulation of Matrix Methaloproteinase 2 Expression in Vivo

  • Abbasi, Mehran Mesgari;Jahanban-Esfahlan, Rana;Monfaredan, Amir;Seidi, Khaled;Hamishehkar, Hamed;Khiavi, Monir Moradzadeh
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.24
    • /
    • pp.10705-10711
    • /
    • 2015
  • Oral cancer is one of the most common and lethal cancers in the world. Combination chemotherapy coupled with nanoparticle drug delivery holds substantial promise in cancer therapy. This study aimed to evaluate the efficacy and safety of two dosages of our novel pH and temperature sensitive doxorubicin-methotrexate-loaded nanoparticles (DOX-MTX NPs) with attention to the MMP-2 mRNA profile in a 4-nitroquinoline-1-oxide induced oral squamous cell carcinoma (OSCC) model in the rat. Our results showed that both IV and oral dosages of DOX-MTX NP caused significant decrease in mRNA levels of MMP-2 compared to the untreated group (p<0.003). Surprisingly, MMP-2 mRNA was not affected in DOX treated compared to cancer group (p>0.05). Our results indicated that IV dosage of MTX-DOX is more effective than free DOX (12 fold) in inhibiting the activity of MMP-2 in OSCCs (P<0.001). Furthermore, MMP-2 mRNA expression in the DOX-MTX treated group showed a significant relation with histopathological changes (P=0.011). Compared to the untreated cancer group, we observed no pathological changes and neither a significant alteration in MMP-2 amount in either of healthy controls that were treated with oral and IV dosages of DOX-MTX NPs whilst cancer group showed a high level of MMP-2 expression compared to healthy controls (p<0.001).Taking together our results indicate that DOX-MTX NPs is a safe chemotherapeutic nanodrug that its oral and IV forms possess potent anti-cancer properties on aggressive tumors like OSCC, possibly by affecting the expression of genes that drive tumor invasion and metastasis.

A Potential Efficacy of Rebamipide as Anti-gastric Cancer Drug (위암치료제로서 rebamipide의 잠재적 효능)

  • Min, Do Sik
    • Journal of Life Science
    • /
    • v.26 no.10
    • /
    • pp.1214-1217
    • /
    • 2016
  • Rebamipide is a mucosal-protective antiulcer drug, but its mechanism of action in gastric cancer remains elusive. CagA, a major virulence factor of Helicobacter pylori (H. pylori), is associated with the risk of gastric cancer. CagA protein is injected into gastric epithelial cells and deregulates a variety of cellular signaling molecules. CagA from H. pylori induces phospholipase D1 (PLD1) expression through NFκB activation in gastric epithelial cells, followed by invasion and proliferation of gastric epithelial cancer cells. Infection with cagA-positive H. pylori and expression of CagA enhances the binding of NFκB to the PLD1 promoter. Rebamipide abolishes H. pylori cagA-induced PLD1 expression via inhibition of binding of NFκB to the PLD1 promoter and also inhibits PLD activity. Moreover, rebamipide abolishes H. pylori CagA-induced β-catenin and the expression of a target cancer stem cell (CSC) marker gene via upregulation of miRNA-320a and -4496, followed by attenuation of self-renewal capacity of H. pylori CagA-infected gastric CSCs. In addition, rebamipide increases the chemosensitivity of CagA-expressed gastric CSCs and suppresses gastric carcinogenesis. Thus, it is speculated that rebamipide might show a potent efficacy as chemotherapeutic drug against gastric cancer cells. In this review, we summarizes recent results regarding the novel insights for the efficacy of rebamipide in gastric cancer cells.

Effects of Scutellariae Radix on Gene Expression of Human Cervical Cancer Cells(SNU-703) (황금추출물이 인간 유래 자궁경부암세포의 유전자발현에 미치는 영향)

  • Jo, Hyun-Jung;Gu, Hee-Jun;Cho, Seong-Hee;Park, Kyung-Mi;Yang, Seung-Jeong
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.22 no.3
    • /
    • pp.117-134
    • /
    • 2009
  • Purpose: In the theory of traditional medicine, Scutellariae Radix (SR) can clear away heat and remove dampness, purge the sthenic fire and remove toxic materials, cool blood and stop bleeding to prevent miscarriage. Recently, SR is known to have anti-cancer activity. For this reason, the present author designed to investigate the effect of SR on proliferation rates of cervical cancer cell line, then effects on genetic profile by SR. Methods: The genetic profile for the effect of SR on human derived cervical cancer cell line, SNU-703, was measured using microarray technique, and the functional analysis on these genes was conducted. Results: Total 519 genes were up-regulated and 606 genes down-regulated in cells treated with SR. Genes induced or suppressed by SR were all mainly concerned with metabolic process, regulation of biological process and protein binding. The network of total protein interactions was measured using cytoscape program, and some key molecules, such as TNFRSF1A, AKT1, MAPK3, and STAT3 that can be used for elucidation of therapeutical mechanism of medicine in future were identified. Conclusion: These results suggest possibility of SR as anti-cancer drug and also suggest that related mechanisms are involved in TNFRSF1A, AKT1, MAPK3, and STAT3 related signalling pathways.

Emerging Targets for Systemic Treatment of Gastric Cancer: HER2 and Beyond

  • In-Ho Kim
    • Journal of Gastric Cancer
    • /
    • v.24 no.1
    • /
    • pp.29-56
    • /
    • 2024
  • In recent years, remarkable progress has been made in the molecular profiling of gastric cancer. This progress has led to the development of various molecular classifications to uncover subtype-specific dependencies that can be targeted for therapeutic interventions. Human epidermal growth factor receptor 2 (HER2) is a crucial biomarker for advanced gastric cancer. The recent promising results of novel approaches, including combination therapies or newer potent agents such as antibody-drug conjugates, have once again brought attention to anti-HER2 targeted treatments. In HER2-negative diseases, the combination of cytotoxic chemotherapy and programmed cell death-1/programmed cell death ligand-1 (PD-1/PD-L1) inhibitors has become the established standard of care in first-line settings. In the context of gastric cancer, potential biomarkers such as PD-L1 expression, Epstein-Barr virus, microsatellite instability, and tumor mutational burden are being considered for immunotherapy. Recently, promising results have been reported in studies on anti-Claudin18.2 and fibroblast growth factor receptor 2 treatments. Currently, many ongoing trials are aimed at identifying potential targets using novel approaches. Further investigations will be conducted to enhance the progress of these therapies, addressing challenges such as primary and acquired resistance, tumor heterogeneity, and clonal evolution. We believe that these efforts will improve patient prognoses. Herein, we discuss the current evidence of potential targets for systemic treatment, clinical considerations, and future perspectives.

Market Trend and Current Status of the Research and Development of Antibody-Drug Conjugates

  • Kwon, Sun-Il
    • Biomedical Science Letters
    • /
    • v.27 no.3
    • /
    • pp.121-133
    • /
    • 2021
  • Antibody-drug conjugates (ADCs) are drawing much interest due to its great potential to be one of the important options in cancer treatments. ADCs are acting like a magic bullet which delivers cytotoxic drugs specifically to cancerous cells throughout the body, thus attacks these cells, while not harming healthy cells. ADCs are complex molecules that are composed of an antibody having targeting capability and linked-payload or cytotoxic drug killing cancerous cells. The key factors of the success in the development of ADC are selection of appropriate antibody, cytotoxic payload and linker for conjugation. Recently there was considerable progress in ADCs development, and a large number of ADCs gained US FDA approval. About 80 new ADCs are under active clinical studies. In this review we present a brief introduction of the US-FDA approved ADCs and global situation in the clinical studies of ADC pipelines. We address an overview on each component of an ADC design such as target antigens, payloads, linkers, conjugation methods, drug antibody ratio. In addition, we discuss on the trend of ADC market where global big pharmas and domestic biopharmaceutical companies are competing to develop safer and more effective ADCs.

Response Evaluation of Chemotherapy for Lung Cancer

  • Hwang, Ki-Eun;Kim, Hak-Ryul
    • Tuberculosis and Respiratory Diseases
    • /
    • v.80 no.2
    • /
    • pp.136-142
    • /
    • 2017
  • Assessing response to therapy allows for prospective end point evaluation in clinical trials and serves as a guide to clinicians for making decisions. Recent prospective and randomized trials suggest the development of imaging techniques and introduction of new anti-cancer drugs. However, the revision of methods, or proposal of new methods to evaluate chemotherapeutic response, is not enough. This paper discusses the characteristics of the Response Evaluation Criteria In Solid Tumor (RECIST) version 1.1 suggested in 2009 and used widely by experts. It also contains information about possible dilemmas arising from the application of response assessment by the latest version of the response evaluation method, or recently introduced chemotherapeutic agents. Further data reveals the problems and limitations caused by applying the existing RECIST criteria to anti-cancer immune therapy, and the application of a new technique, immune related response criteria, for the response assessment of immune therapy. Lastly, the paper includes a newly developing response evaluation method and suggests its developmental direction.

An Anti-cancer Drug, Paclitaxel. Induces Apoptosis in MCF-7 Human Breast Cancer Cells by Generating Ceramide and Arachidonic Acid

  • Chin, Mi-Reyoung;Kang, Mi-Sun;Kim, Dae-Kyong
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.279.1-279.1
    • /
    • 2002
  • Accumulation of ceramide mass in MCF-7 cells by the anti-cancer agent. paclitaxel. was found to occur primarily due to activation of the de novo synthesis pathway. Morever. the addition of paclitaxel resulted in the accumulation of ceramide, which was followed by a prolonged arachidonic acid release. Participation of ceramide de novo pathway in arachidonate signaling was detected since L-cycloserine, an inhibitor of de novo synthesis, was able to inhibit the paclitaxel-induced AA release and cytotoxicity. (omitted)

  • PDF

Concept and limitation of breast cancer stem cells (유방암 줄기세포 개념 및 제한점)

  • Kim, Jong Bin;An, Jeong Shin;Lim, Woosung;Moon, Byung-In
    • Journal of Medicine and Life Science
    • /
    • v.15 no.2
    • /
    • pp.46-50
    • /
    • 2018
  • Cancer, a leading mortality disease following cardiovascular disease worldwide, has high incidence as one out of every four adults in Korea. It was known to be caused by several reasons including somatic mutation, activation of oncogene and chromosome aneuploidy. Cancer cells show a faster growth rate and have metastatic and heterogeneous cell populations compared to normal cells. Cancer stem cells, the most invested field in cancer biology, is a theory to explain heterogeneous cell populations of cancer cells among several characteristics of cancer cells, which is providing the theoretical background for incidence of cancer and treatment failure by drug resistance. Cancer stem cells initially explain heterogeneous cell populations of cancer cells based on the same markers of normal stem cells in cancer, in which only cancer stem cells showed heterogeneity of cancer cells and tumor initiating ability of leukemia. Based on these results, cancer stem cells were reported in various solid cancers such as breast cancer, liver cancer, and lung cancer. Breast cancer stem cells were first reported in solid cancer which had tumor initiating ability and further identified as anti-cancer drug resistance. There were several identification methods in breast cancer stem cells such as specific surface markers and culture methods. The discovery of cancer stem cells not only explains heterogeneity of cancer cells, but it also provides theoretical background for targeting cancer stem cells to complete elimination of cancer cells. Many institutes have been developing new anticancer drugs targeting cancer stem cells, but there have not been noticeable results yet. Many researchers also reported a necessity for improvement of current concepts and methods of research on cancer stem cells. Herein, we discuss the limitations and the perspectives of breast cancer stem cells based on the current concept and history.