• Title/Summary/Keyword: Anti TNF

Search Result 2,032, Processing Time 0.032 seconds

Effects of Parsley Extract on Skin Anti-aging and Anti-irritation (파슬리추출물의 피부 노화 방지와 자극 완화에 대한 효과)

  • 김수남;이소희;최규호;장이섭;이병곤
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.1
    • /
    • pp.79-83
    • /
    • 2004
  • In order to investigate the beneficial effects of parsely (Petroselinurn sativum) extract on skin, we measured the synthesis of total collagen and type I procollagen in cultured normal human fibroblast (NHF), the synthesis of prostaglandin E$_2$(PCE$_2$), interleukin 1 ${\alpha}$(IL -1 ${\alpha}$) and tumor necrosis factor ${\alpha}$ (TNF ${\alpha}$) in HaCaT cell and we also measured dermal thickness and density in hairless mouse (Female albino hairless mice, Skh:hr-1). As the results, the synthesis of total collagen and type I procollagen were increased 23% and 18% respectively, after 1 $\mu\textrm{g}$/mL parsley extract treatment. The producions of PGE$_2$ induced by UVB irradiation were decreased 60% after 1 $\mu\textrm{g}$/mL parsley extract treatment. The treatment with 1 $\mu\textrm{g}$/mL parsley extract also decreased the synthesis of IL -1 ${\alpha}$ and TNF ${\alpha}$ induced by 10 uM RA, 100 $\mu\textrm{g}$/mL SLS and 30 mJ/$\textrm{cm}^2$ UVB irradiation, After 4 days treatment with 1% parsley extract, the dermal thickness of hairless mouse was increased 1.5 times and the density of dermis was tighter than control. These results indicate that parsley extract have anti-aging and anti-irritation effects on skin.

Comparing the anti-inflammatory effect of nanoencapsulated lycopene and lycopene on RAW 264.7 macrophage cell line (RAW 264.7 대식세포주에서 나노입자화 리코펜의 항염증 증진 효과)

  • Seo, Eun Young;Kim, Myung Hwan;Kim, Woo-Kyoung;Chang, Moon-Jeong
    • Journal of Nutrition and Health
    • /
    • v.48 no.6
    • /
    • pp.459-467
    • /
    • 2015
  • Purpose: We developed a method to load lycopene into maltodextrin and cyclodextrin in an attempt to overcome the poor bioavailability and improve the anti-inflammatory effect of this polyphenol. Methods: Nanosized lycopenes were encapsulated into biodegradable amphiphillic cyclodextrin and maltodextrin molecules prepared using a high pressure homogenizer at 15,000~25,000 psi. Cell damage was induced by lipopolysaccharides (LPS) in a mouse macrophage cell line, RAW 264.7. The cells were subjected to various doses of free lycopene (FL) and nanoencapsulated lycopene (NEL). RT-PCR was used to quantify the tumor necrosis factor (TNF-${\alpha}$), interleukin-$1{\beta}$ (IL-$1{\beta}$), IL-6, inducible nitric oxide synthase (iNOS), and cyclooxigenase-2 (COX-2) mRNA levels, while ELISA was used to determine the protein levels of TNF-${\alpha}$, IL-$1{\beta}$, and IL-6. Results: NEL significantly reduced the mRNA expression of IL-6 and IL-$1{\beta}$ at the highest dose, while not in cells treated with FL. In addition, NEL treatment caused a significant reduction in IL-6 and TNF-${\alpha}$ protein levels, compared to cells treated with a similar dose of FL. In addition, mRNA expression of iNOS and COX-2 enzyme in the activated macrophages was more efficiently suppressed by NEL than by FL. Conclusion: Overall, our results suggest that lycopene is a potential inflammation reducing agent and nanoencapsulation of lycopene can further improve its anti-inflammatory effect during tissue-damaging inflammatory conditions.

Anti-Inflammatory Activity of Carthamus tinctorious Seed Extracts in Raw 264.7 cells (대식세포 내에서의 홍화자 추출물의 항염증 활성)

  • Kim, Dong-Hee;Hwang, Eun-Young;Son, Jun-Ho
    • Journal of Life Science
    • /
    • v.23 no.1
    • /
    • pp.55-62
    • /
    • 2013
  • The objective of this study was to evaluate the anti-inflammation effect of extract of Carthamus tinctorious seed, on skin obtained from Gyeong buk, Korea. Regulatory mechanisms of cytokines and nitric oxide (NO) involved in immunological activity of Raw 264.7 cells. Tested cells were pretreated with 70% ethanol extracted of Carthamus tinctorious seed and further cultured for an appropriated time after the addition of lipopolyssacharide (LPS). During the entire experimental period, 5, 10, 25 and 50 ${\mu}g/ml$ of Carthamus tinctorious seed showed no cytotoxicity. In these concentrations, ethyl acetate layer of ethanol extracted Carthamus tinctorius seed (CT-E/E) inhibited the production of NO and prostaglandin $E_2$ ($PGE_2$), tumor necorsis factor-a (TNF-${\alpha}$), interleukin-$1{\beta}$ (IL-$1{\beta}$), interleukin-6 (IL-6) expression of inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2). At a 50 ${\mu}g/ml$ level of CT-E/E, $PGE_2$, iNOS and COX-2 inhibition activity were shown 60%, 38%, and 42%, respectively. In addition, CT-E/E reduced the release of inflammatory cytokines including TNF-${\alpha}$, IL-$1{\beta}$ and IL-6. These results suggest that Carthamus tinctorious seed extracts may be a potential anti-inflammatory therapeutic agent due to the significant effects on inflammatory factors.

The Anti-inflammatory and Antiallergic Effects of Allomyrina dichotoma Larva Hot-water Extract (장수풍뎅이 유충 열수 추출물에 의한 항알레르기와 항염증 효과)

  • Lee, Hwa Jeong;Seo, Minchul;Kim, In-Woo;Lee, Joon Ha;Hwang, Jae-Sam;Kim, Mi-Ae
    • Journal of Life Science
    • /
    • v.27 no.10
    • /
    • pp.1130-1136
    • /
    • 2017
  • Traditionally, the larvae of Allomyrina dichotoma (AD), a species of the rhinoceros beetle, have been widely used for their antidiabetic, antihepatofibrotic, antineoplastic, and antiobesity effects. The United Nations' Food and Agriculture Organization has reported on the possibility of using edible insects in human dietary supplements in the future. However, despite the growing interest in insect-based bio-active products, the biological activities of these products have rarely been studied. Previously, we reported that AD larvae inhibit the in vitro differentiation of adipocytes via transcription factor downregulation. In this study, our objective was to evaluate the effects of a hot-water extract of AD larvae on allergy and inflammation. To investigate the inhibitory effect of the extract on allergic reactions, we measured the levels of ${\beta}-hexosaminidase$, tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$), interleukin-4 (IL-4), and cyclooxygenase-2 (COX-2) after activation of RBL-2H3 cells using Compound 48/80. In addition, the inhibitory effect of the extract on inflammation was determined using Raw 264.7 cells after lipopolysaccharide (LPS) stimulation. The extract significantly inhibited the ${\beta}-hexosaminidase$, $TNF-{\alpha}$, IL-4, and COX-2 levels in RBL-2H3 cells. Furthermore, it effectively inhibited the inflammatory cytokine IL-6, nitric oxide, and inducible nitric oxide synthase expression in LPS-stimulated Raw 264.7 cells. These results suggest that AD larval extract can be potentially developed as an antiallergic and anti-inflammatory therapeutic agent.

Inflammatory mediator regulation of the Zizyphus jujube leaf fractions in the LPS-stimulated Raw264.7 mouse machrophage (LPS로 염증이 유도된 Raw 264.7 대식세포에서 대추(Zizyphus jujube) 잎 분획물의 염증매개물질 억제)

  • Kim, Ye Jin;Son, Dae-Yeul
    • Food Science and Preservation
    • /
    • v.21 no.1
    • /
    • pp.114-120
    • /
    • 2014
  • Zizyphus jujube leaf fractions (ZLFs) showed no cytotoxic effects of up to $100{\mu}g/mL$, while the anti-inflammatory effects of ZLFs were analyzed by checking the productions of nitric oxide (NO), prostaglandin $E_2$ ($PGE_2$), cyclooxygenase-2 (COX-2), and inflammatory cytokines TNF-${\alpha}$, IL-$1{\beta}$, and IL-6 in the lipopolysaccharide (LPS)-stimulated Raw264.7 macrophage up to the concentration of $100{\mu}g/mL$. ZLFs ($100{\mu}g/mL$) demonstrated a strong anti-inflammatory activity that reduced 61~85% of NO and 71~100% of $PGE_2$ production in the LPS-stimulated Raw264.7 macrophage. Even the low ZLFs concentration of $1{\mu}g/mL$ have reduced NO and $PGE_2$ production by 34~64%. Expressions of COX-2 protein were also effectively inhibited by the ZLFs. Furthermore, the TNF-${\alpha}$, IL-$1{\beta}$, and IL-6 production were significantly suppressed through the treatment of ZLFs at concentrations of 1, 10, and $100{\mu}g/mL$. In the order of the Zizyphus jujube leaf water fraction (ZLWF) < buthanol fraction (ZLBF) < ethyl acetate fraction (ZLEF) showed anti-inflammatory activity. In particular, the ethyl acetate fraction ZLEF at $100{\mu}g/mL$ showed an excellent anti-inflammatory activity by reducing the production of NO, $PGE_2$, COX-2, and inflammatory cytokines (TNF-${\alpha}$, IL-$1{\beta}$, IL-6) in the level of Raw264.7 macrophage without LPS-stimulation or even better. The results of our study suggest the potential of ZLEF for use as an excellent ant-inflammatory inhibiting mediator and may be used as a therapeutic approach to various inflammatory diseases.

Studies on the Anti-inflammatory and Anti-apoptotic Effect of Catalposide Isolated from Catalpa ovata (개오동나무에서 추출(抽出)한 Catalposide의 항염(抗炎) 및 세포고사(細胞枯死) 억제효과(抑制效果)에 관(關)한 연구(硏究))

  • Oh, Cheon-Sik;Hwang, Sang-Wook;Kim, Yong-Woo;Song, Dal-Soo;Chae, Young-Seok;Jeong, Jong-Gil;Song, Ho-Joon;Shin, Min-Kyo
    • The Korea Journal of Herbology
    • /
    • v.20 no.3
    • /
    • pp.29-41
    • /
    • 2005
  • Objectives : The use of natural products with therapeutic properties is as ancient as human civilisation and, for a long time, mineral, plant and animal products were the main sources of drugs. Catalposide, the major iridoid glycoside isolated from the stem bark of Catalpa ovata G. Don (Bignoniceae) has been shown to possess anti-microbial and anti-tumoral properties. Heme oxygenase-1 (HO-1) is a stress response protein and is known to play a protective role against the oxidative injury. In this study, we examined whether catalposide could protect Neuro 2A cells, a kind of neuronal cell lines, from oxidative damage through the induction of HO-1 protein expression and HO activity. We also examined the effects of catalposide on the productions of tumor necrosis $factor-{\alpha}\;(TNF-{\alpha})$ and nitric oxide (NO) on RAW 264.7 macrophages activated with the endotoxin lipopolysaccharide. Methods : HO-1 expression in Neuro 2A cells was measured by Western blotting analysis. NO and $TNF--{\alpha}$ produced by RAW 264.7 macrophage were measured by Griess reagent and enzyme-linked immunosorbent assay, respectively. Results : The treatment of the cells with catalposide resulted in dose- and time-dependent up-regulations of both HO-1 protein expression and HO activity. Catalposide protected the cells from hydrogen peroxide-induced cell death. The protective effect of catalposide on hydrogen peroxide-induced cell death was abrogated by zinc protoporphyrin IX, a HO inhibitor. Additional experiments revealed the involvement of CO in the cytoprotective effect of catalposide-induced HO-1. In addition, catalposide inhibited the productions of $TNF--{\alpha}$ and NO with significant decreases in mRNA levels of $TNF--{\alpha}$ and inducible NO synthase. Conclusions : Our results indicate that catalposide is a potent inducer of HO-1 and HO-1 induction is responsible for the catalposide-mediated cytoprotection against oxidative damage and that catalposide may have therapeutic potential in the control of inflammatory disorders.

  • PDF

Anti-inflammatory Effect of Artemisia Capillaris Thunberg in Lipopolysaccharide-exposed Rats (인진호(茵蔯蒿)가 LPS 염증유발 흰쥐의 전염증성 cytokine 생산 및 혈액성상에 미치는 영향)

  • Seo, Yong-Seok;Lee, Eun;Cha, Yun-Yeop
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.20 no.3
    • /
    • pp.27-35
    • /
    • 2010
  • Objectives : The present study investigated anti-inflammatory effect of Artemisia Capilaris Thunberg in lipopolysaccharide-exposed rats. Methods : We divided lipopolysaccharide-exposed Sprague-Dawley rats into 4 groups. They were normal group, feed with 100 mg/kg Artemisia Capillaris Thunberg group, feed with 200 mg/kg Artemisia Capillaris Thunberg group and feed with 300 mg/kg Artemisia capilaris Thunberg group. They were administered for 6 weeks. We measured counts of red blood cell(RBC), the values of hemoglobin(Hb) and packed cell volume(PCV), plasma total protein concentration, albumin concentration, the ratio of albumin/globulin, the activities of plasma glutamic oxaloacetic transaminase(GOT), glutamic pyruvic transaminase(GPT), lactate dehydrogenase(LDH), the counts of white blood cell(WBC), the ratio of neutrophils, lymphocytes, monocytes, basophils, eosinophils, the concentration of plasma interleukin-$1{\beta}$($IL-1{\beta}$), plasma interleukin-6(IL-6), plasma tumor necrosis factor-$\alpha$($TNF-{\alpha}$), plasma interleukin-10(IL-10), the concentration of liver $IL-1{\beta}$ and IL-6, $TNF-{\alpha}$, IL-10. Results : Counts of RBC and the values of Hb and PCV, plasma total protein concentration and albumin concentration, the activities of plasma GOT, GPT and LDH showed no significant difference in the treatment groups. and the ratio of albumin/globulin was increased in Artemisia Capillaris Thunberg groups. The counts of WBC showed lower values in Artemisia Capillaris Thunberg groups than those of control group, In the ratio of neutrophils Thunberg groups. The ration of monocytes, basophils and eosinophils were below 5%, and showed no characteristic trend. The concentration of plasma interleukin-$1{\beta}$($IL-1{\beta}$), plasma inerleukin-6(IL-6) and plasma tumor necrosis factor-$\alpha$($TNF-{\alpha}$) showed a lower values in the Artemisia Capillaris Thunberg groups than those of control group, and the concentration of plasma interleukin-10(IL-10) showed no significant difference in the treatment groups. The concentration of liver $IL-1{\beta}$ and IL-6 showed a lower values in the Artemisia Capillaris Thunberg groups than those of control group, however the concentration of liver $TNF-{\alpha}$ and IL-10 showed no significant difference in the treatment groups. Conclusions : The Artemisia Capillaris Thunberg groups gives positive results of anti-inflammatory response by lipopolysaccharide(LPS) derivation.

Zinc deficiency decreased cell viability both in endothelial EA.hy926 cells and mouse aortic culture ex vivo and its implication for anti-atherosclerosis

  • Cho, Young-Eun;Choi, Jee-Eun;Alam, Md. Jahangir;Lee, Man-Hyo;Sohn, Ho-Yong;Beattie, John H.;Kwun, In-Sook
    • Nutrition Research and Practice
    • /
    • v.2 no.2
    • /
    • pp.74-79
    • /
    • 2008
  • Zinc plays a protective role in anti-atherosclerosis but the clear mechanism has not been proposed yet. In the present study, we evaluated whether zinc modulates atherosclerotic markers, VACM-1 and ICAM-1 and cell viability both in endothelial cells in vitro and mouse aortic cell viability ex vivo. In study 1, as in vitro model, endothelial EA.hy926 cells were treated with $TNF{\alpha}$ for 5 hours for inducing oxidative stress, and then treated with Zn-adequacy ($15\;{\mu}M$ Zn) or Zn-deficiency ($0\;{\mu}M$ Zn) for 6 hours. Pro-atherosclerosis factors, VCAM-1 and ICAM-1 mRNA expression and cell viability was measured. In study 2, as ex vivo model, mouse aorta ring was used. Mourse aorta was removed and cut in ring then, cultured in a 96-well plate. Aortic ring was treated with various $TNF{\alpha}$ (0-30 mg/ml) and intracellular zinc chelator, N, N, N', N', -tetrakis (2-pyridylmethyl) ethylenediamine (TPEN, $0-30\;{\mu}M$) for cellular zinc depletion for 2 days and then cell viability was measured. The results showed that in in vitro study, Zn-adequate group induced more VCAM-1 & ICAM-1 mRNA expression than Zn-deficient group during 6-hour zinc treatment post-5 hour TNF-$\alpha$ treatment, unexpectedly. These results might be cautiously interpreted that zinc would biologically induce the early expression of anti-oxidative stress through the increased adhesion molecule expression for reducing atherosclerotic action, particularly under the present 6-hour zinc treatment. In ex vivo, mouse aortic ring cell viability was decreased as TNF-$\alpha$ and TPEN levels increased, which suggests that mouse aortic blood vessel cell viability was decreased, when oxidative stress increases and cellular zinc level decreases. Taken together, it can be suggested that zinc may have a protective role in anti-atherosclerosis by cell viability in endothelial cells and aorta tissue. Further study is needed to clarify how pro-atherosclerosis molecule expression is modulated by zinc.

TNF$\beta$ Induces Cytotoxicity of Antibody-Activated CD$4^+$T-lymphocytes Against Herpes Virus-Infected Target Cells

  • Choi, Sang Hoon
    • Animal cells and systems
    • /
    • v.8 no.2
    • /
    • pp.125-133
    • /
    • 2004
  • We have extended our previous work that cross-linking CD4 molecules using specific MAb induced antigen nonspecific, MHC unrestricted killing of virally infected target cells by CD$4^+$We have extended our previous work that cross-linking CD$4^+$ molecules using specific MAb induced antigen nonspecific, MHC unrestricted killing of virally infected target cells by CD$4^+$ T cells. The killing activity of antibody activated CD$4^+$T cells was completely blocked by herbimycin A, a protein tyrosine kinase (PTK) inhibitor, but not by bisindolylamaleimide, a protein kinase C (PKC) inhibitor. Herbimycin A treated human or bovine peripheral blood CD$4^+$T cells lacked PTK activity and failed to kill virally infected target cells even after cross-linking of CD4 molecules. The CD$4^+$cross-linking failed to induce effector cell proliferation or the transcription of TNF${\beta}$ Upregulation of TNF${\beta}$ was induced by incubating the antibody activated effector cells with BHV-1 infected D17 target cells for 10 h. Anti-TNF${\beta}$ antibody partially abolished (13-44%) the direct effector cell-mediated antiviral cytotoxicity. However, this antibody neutralized 70 to 100% of antiviral activity of effector and target cell culture supernatants against BHV-1 infected D17 cells. The inhibition level of the antiviral activity by the antibody was dependent on the effector and target cell ratio. These results support the hypothesis that increased p$56^ICK enzyme activity in effector cells transduces a signal critical for effector cell recognition of viral glycoproteins expressed on the target cells. Following target cell recognition, lytic cytokines known to participate in target cell killing were produced. A better understanding of the killing activity displayed by CD$4^+$T lymphocytes following surface receptor cross-linking will provide insight into the mechanisms of cytotoxic activity directed toward virally-infected cells.T cells. The killing activity of antibody activated CD$4^+$T cells was completely blocked by herbimycin A, a protein tyrosine kinase (PTK) inhibitor, but not by bisindolylamaleimide, a protein kinase C (PKC) inhibitor. Herbimycin A treated human or bovine peripheral blood CD4T cells lacked PTK activity and failed to kill virally infected target cells even after cross-linking of CD4molecules. The CD4 cross-linking failed to induce effector cell proliferation or the transcription of TNF$\beta$. Upregulation of TNF$\beta$ was induced by incubating the antibody activated effector cells with BHV-1 infected D17 target cells for 10 h. Anti-TNF$\beta$ antibody partially abolished (13-44%) the direct effector cell-mediated antiviral cytotoxicity. However, this antibody neutralized 70 to 100% of antiviral activity of effector and target cell culture supernatants against BHV-1 infected D17 cells. The inhibition level of the antiviral activity by the antibody was dependent on the effector and target cell ratio. These results support the hypothesis that increased $56^ICK enzyme activity in effector cells transduces a signal critical for effector cell recognition of viral glycoproteins expressed on the target cells. Following target cell recognition, lytic cytokines known to participate in target cell killing were produced. A better understanding of the killing activity displayed by CD$4^+$T lymphocytes following surface receptor cross-linking will provide insight into the mechanisms of cytotoxic activity directed toward virally-infected cells.

Nafamostat Mesilate Inhibits TNF-${\alpha}$-Induced Vascular Endothelial Cell Dysfunction by Inhibiting Reactive Oxygen Species Production

  • Kang, Min-Woong;Song, Hee-Jung;Kang, Shin Kwang;Kim, Yonghwan;Jung, Saet-Byel;Jee, Sungju;Moon, Jae Young;Suh, Kwang-Sun;Lee, Sang Do;Jeon, Byeong Hwa;Kim, Cuk-Seong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.3
    • /
    • pp.229-234
    • /
    • 2015
  • Nafamostat mesilate (NM) is a serine protease inhibitor with anticoagulant and anti-inflammatory effects. NM has been used in Asia for anticoagulation during extracorporeal circulation in patients undergoing continuous renal replacement therapy and extra corporeal membrane oxygenation. Oxidative stress is an independent risk factor for atherosclerotic vascular disease and is associated with vascular endothelial function. We investigated whether NM could inhibit endothelial dysfunction induced by tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$ ). Human umbilical vein endothelial cells (HUVECs) were treated with TNF-${\alpha}$ for 24 h. The effects of NM on monocyte adhesion, vascular cell adhesion molecule-1 (VCAM-1) and intracellular adhesion molecule-1 (ICAM-1) protein expression, p38 mitogenactivated protein kinase (MAPK) activation, and intracellular superoxide production were then examined. NM ($0.01{\sim}100{\mu}g/mL$) did not affect HUVEC viability; however, it inhibited the increases in reactive oxygen species (ROS) production and p66shc expression elicited by TNF-${\alpha}$ (3 ng/mL), and it dose dependently prevented the TNF-${\alpha}$ -induced upregulation of endothelial VCAM-1 and ICAM-1. In addition, it mitigated TNF-${\alpha}$ -induced p38 MAPK phosphorylation and the adhesion of U937 monocytes. These data suggest that NM mitigates TNF-${\alpha}$ -induced monocyte adhesion and the expression of endothelial cell adhesion molecules, and that the anti-adhesive effect of NM is mediated through the inhibition of p66shc, ROS production, and p38 MAPK activation.