• Title/Summary/Keyword: Anthropogenic sources

Search Result 244, Processing Time 0.018 seconds

Application of MODIS Aerosol Data for Aerosol Type Classification (에어로졸 종류 구분을 위한 MODIS 에어로졸 자료의 적용)

  • Lee, Dong-Ha;Lee, Kwon-Ho;Kim, Young-Joon
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.6
    • /
    • pp.495-505
    • /
    • 2006
  • In order to classify aerosol type, Aerosol Optical Thickness (AOT) and Fine mode Fraction (FF), which is the optical thickness ratio of small particles$(<1{\mu}m)$ to total particles, data from MODIS (MODerate Imaging Spectraradiometer) aerosol products were analyzed over North-East Asia during one year period of 2005. A study area was in the ocean region of $20^{\circ}N\sim50^{\circ}N$ and $110^{\circ}E\simt50^{\circ}E$. Three main atmospheric aerosols such as dust, sea-salt, and pollution can be classified by using the relationship between AOT and FF. Dust aerosol has frequently observed over the study area with relatively high aerosol loading (AOT>0.3) of large particles (FF<0.65) and its contribution to total AOT in spring was up to 24.0%. Pollution aerosol, which is originated from anthropogenic sources as well as a natural process like biomass burning, has observed in the regime of high FF (>0.65) with wide AOT variation. Average pollution AOT was $0.31{\pm}0.05$ and its contribution to total AOT was 79.8% in summer. Characteristic of sea-salt aerosol was identified with low AOT (<0.3), almost below 0.1, and slightly higher FF than dust and lower FF than pollution. Seasonal analysis results show that maximum AOT $(0.33{\pm}0.11)$ with FF $(0.66{\pm}0.21)$ in spring and minimum AOT $(0.19{\pm}0.05)$, FF $(0.60{\pm}0.14)$ in fall were observed in the study area. Spatial characteristic was that AOT increasing trend is observed as closing to the eastern part of China due to transport of aerosols from China by the prevailing westerlies.

Chemical Characteristics of Shallow Groundwater in an Agricultural District of Hyogyo-ri Area, Chungnam Province (충남 효교리 농업지역 천부지하수의 화학적 특성)

  • Jeon, Hang-Tak;Hamm, Se-Yeong;Choi, Eun-Gyeong;Kim, HyunKoo;Kim, MoonSu;Park, Ki-Hoon;Lim, Woo-Ri
    • Journal of the Korean earth science society
    • /
    • v.41 no.6
    • /
    • pp.630-646
    • /
    • 2020
  • In rural areas, nitrate-nitrogen (NO3-N) pollution caused by agricultural activities is a major obstacle to the use of shallow groundwater as domestic water or drinking water. In this study, the water quality characteristics of shallow groundwater in Hyogyo-ri agricultural area of Yesan-gun, Chungcheongnam-do province was studied in connection with land use and chemical composition of soil layer. The average NO3-N concentration in groundwater exceeds the domestic and agricultural standard water qualities of Korea and is caused by anthropogenic sources such as fertilizer, livestock wastewater, and domestic sewage. The groundwater type mainly belongs to Ca(Na)-Cl type, unlike Ca-HCO3 type, a general type of shallow groundwater. The average NO3-N concentration (7.7 mg L-1) in groundwater in rice paddy/other (upstream, ranch, and residential) area is lower than the average concentration (22.8 mg L-1) in farm field area, due to a lower permeability in paddy area than that in farm field area. According to the trend analysis by the Mann-Kendall and Sen tests, the NO3-N concentration in the shallow groundwater shows a very weak decreasing trend with ~0.011 mg L-1yr-1 with indicating almost equilibrium state. Meanwhile, SO42- and HCO3- concentrations display annual decreasing trend by 15.48 and 13.15%, respectively. At a zone of 0 to 5 m below the surface, the average hydraulic conductivity is 1.86×10-5 cm s-1, with a greater value (1.03×10-4cm s-1) in sand layer and a smaller value (2.50×10-8 cm s-1) in silt layer.

Influence of Land Cover Map and Its Vegetation Emission Factor on Ozone Concentration Simulation (토지피복 지도와 식생 배출계수가 오존농도 모의에 미치는 영향)

  • Kyeongsu Kim;Seung-Jae Lee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.1
    • /
    • pp.48-59
    • /
    • 2023
  • Ground-level ozone affects human health and plant growth. Ozone is produced by chemical reactions between oxides of nitrogen (NOx) and volatile organic compounds (VOCs) from anthropogenic and biogenic sources. In this study, two different land cover and emission factor datasets were input to the MEGAN v2.1 emission model to examine how these parameters contribute to the biogenic emissions and ozone production. Four input sensitivity scenarios (A, B, C and D) were generated from land cover and vegetation emission factors combination. The effects of BVOCs emissions by scenario were also investigated. From air quality modeling result using CAMx, maximum 1 hour ozone concentrations were estimated 62 ppb, 60 ppb, 68 ppb, 65 ppb, 55 ppb for scenarios A, B, C, D and E, respectively. For maximum 8 hour ozone concentration, 57 ppb, 56 ppb, 63 ppb, 60 ppb, and 53 ppb were estimated by scenario. The minimum difference by land cover was up to 25 ppb and by emission factor that was up to 35 ppb. From the modeling performance evaluation using ground ozone measurement over the six regions (East Seoul, West Seoul, Incheon, Namyangju, Wonju, and Daegu), the model performed well in terms of the correlation coefficient (0.6 to 0.82). For the 4 urban regions (East Seoul, West Seoul, Incheon, and Namyangju), ozone simulations were not quite sensitive to the change of BVOC emissions. For rural regions (Wonju and Daegu) , however, BVOC emission affected ozone concentration much more than previously mentioned regions, especially in case of scenario C. This implies the importance of biogenic emissions on ozone production over the sub-urban to rural regions.

NO2 and SO2 Reduction Capacities and Their Relation to Leaf Physiological and Morphological Traits in Ten Landscaping Tree Species (조경수 10개 수종에 있어 NO2, SO2 저감 능력과 잎의 생리적, 형태적 특성과의 관계)

  • Kim, Kunhyo;Jeon, Jihyeon;Yun, Chan Ju;Kim, Tae Kyung;Hong, Jeonghyun;Jeon, Gi-Seong;Kim, Hyun Seok
    • Journal of Korean Society of Forest Science
    • /
    • v.110 no.3
    • /
    • pp.393-405
    • /
    • 2021
  • With increasing anthropogenic emission sources, air pollutants are emerging as a severe environmental problem worldwide. Accordingly, the importance of landscape trees is emerging as a potential solution to reduce air pollutants, especially in urban areas. This study quantified and compared NO2 and SO2 reduction abilities of ten major landscape tree species and analyzed the relationship between reduction ability and physiological and morphological characteristics. The results showed NO2 reduction per leaf area was greatest in Cornus officinalis (19.81 ± 3.84 ng cm-2 hr-1) and lowest in Pinus strobus (1.51 ± 0.81 ng cm-2 hr-1). In addition, NO2 reduction by broadleaf species (14.72 ± 1.32 ng cm-2 hr-1) was 3.1-times greater than needleleaf species (4.68 ± 1.26 ng cm-2hr-1; P < 0.001). Further, SO2 reduction per leaf area was greatest in Zelkova serrata (70.04 ± 7.74 ng cm-2 hr-1) and lowest in Pinus strobus (4.79 ± 1.02 ng cm-2 hr-1). Similarly, SO2 reduction by broadleaf species (44.21 ± 5.01 ng cm-2 hr-1) was 3.9-times greater than needleleaf species (11.47 ± 3.03 ng cm-2 hr-1; P < 0.001). Correlation analysis revealed differences in NO2 reduction was best explained by chlorophyll b content (R2 = 0.671, P = 0.003) and SO2 reduction was best described by SLA and length of margin per leaf area (R2 = 0.456, P = 0.032 and R2 = 0.437, P = 0.001, R2 = 0.872, P < 0.001, respectively). In summary, the ability of trees to reduce air pollutants was related to photosynthesis, evapotranspiration, stomatal conductance, and leaf thickness. These findings highlight effective reduction of air pollutants by landscaping trees requires comprehensively analyzing physiological and morphological species characteristics.