• Title/Summary/Keyword: Anthropogenic soil

Search Result 188, Processing Time 0.023 seconds

A Study on the Characteristics of Particulate Matter in the Coastal Regions (해안지역에서 입자상물질의 특성에 관한 연구)

  • 최민규;조기철;강충민;여현구;김희강
    • Journal of Environmental Health Sciences
    • /
    • v.24 no.3
    • /
    • pp.114-123
    • /
    • 1998
  • Particulate matters(less than 10 $\mu$m, PM10) at Kanghwa and Yangyang, which are located in the western and the eastern coastal regions in Korea, were measured in using low volume air sampler from December 1995 to November 1996, and their characteristics were investigated from the view point of background level.(and in order to characterize the particulate matters.) The particulate matters were analyzed for major water soluble ionic components(SO$_{4}^{2-}$, NO$_{3}^{-}$, Cl$^{-}$, Na$^{+}$, NH$_{4}^{+}$, K$^{+}$, Mg$^{2+}$ and Ca$^{2+}$) by ion chromatography. Mass concentrations of particulate matters were $48.77 \pm 22.45 \mug/m^{3}$ at Kanghwa and $54.04 \pm 32.98 \mug/m^{3}$ at Yangyang and SO$_{4}^{2-}$, NO$_{3}^{-}$ and NH$_{4}^{+}$ contributed largely to water soluble ionic components. nss(non sea salt)-SO$_{4}^{2-}$, contributed more than 95 percentage to SO$_{4}^{2-}$ and nss-K$^{+}$ and nss-Ca$^{2+}$ also contributed high percentages to K$^{+}$ and Ca$^{2+}$. It was supposed that most SO$_{4}^{2-}$, was originated from anthropogenic sources, and K$^{+}$ and Ca$^{+}$ were mainty originated from soil. The results of factor analysis suggested possibility of interpreting the correlation between air pollutants and regional characteristics.

  • PDF

Global Carbon Cycle and Budget Study (지구규모의 탄소 순환 및 물질수지 연구)

  • 권오열
    • Journal of Environmental Science International
    • /
    • v.5 no.4
    • /
    • pp.429-440
    • /
    • 1996
  • A global carbon cycle model (GCCM), that incorporates interaction among the terrestrial biosphere, ocean, and atmosphere, was developed to study the carbon cycling aid global carbon budget, especially due to anthropogenic $CO_2$ emission. The model that is based on C, 13C and 14C mass balance, was calibrated with the observed $CO_2$ concentration, $\delta$13C and $\Delta$14C in the atmosphere, Δ14C in the soil, and $\Delta$14C in the ocean. Also, GCCM was constrained by the literature values of oceanic carbon uptake and CO, emissions from deforestation. Inputs (forcing functions in the model) were the C, 13C and 14C as $CO_2$ emissions from fossil fuel use, and 14C injection into the stratosphere by bomb-tests. The simulated annual carbon budget of 1980s due to anthropoRenic $CO_2$ shows that the global sources were 5.43 Gt-C/yr from fossil fuel use and 0.91 Gt-C/yr from deforestation, and the sinks were 3.29 Gt-C/yr in the atmosphere, 0.90 Gt-C/yr in the terrestrial biosphere and 2.15 Gt-C/yr in the ocean. The terrestrial biosphere is currently at zero net exchange with the atmosphere, but carbon is lost cia organic carbon runoff to the ocean. The model could be utilized for a variety of studies in $CO_2$ policy and management, climate modeling, $CO_2$ impacts, and crop models.

  • PDF

A Study on the Coarse Particles Burden to Aerosol in Seoul Area (粗大粒子가 大氣淨遊粉塵에 주는 負荷)

  • 이윤재;김희강
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.1 no.1
    • /
    • pp.71-82
    • /
    • 1985
  • The effect on the particulate matters in the atmosphere was investigated in Seoul area from March, 1984 to Aprill, 1985. Aerosols were collected by filters on nine stages Andrsen Air Sampler, and size distribution and total concentration of the aerosols, Fe and Pb were measured. In spring with Yellow Sand the concentration of particles in aerosols was 185.55$\mug/m^3$ and CP/TA was 65.9%. But in spring without Yellow Sand those of particles was 135.45$\mug/m^3$ and CP/TA was 58.6%. Accordingly the concentration of coarse particles with Yellow Sand was higher than without them in Spring. Above results indicate that in Seoul Area the main source of air pollution originated from natural burdens, especially from soil. The concentration of Pb was similarly valued through both seasons in Seoul area but fine particles valued above coarse particles. On the other hand, in urban area, the natural and anthropogenic sources have influenced on the concentration of Pb. With referred to particle size distribution for Fe, the concentration of coarse particles was 0.168$\etag/m^3$ (CP/TA: 74.3%) in Spring with Yellow Sand, 0.096$\mug/m^3$ (CP/TA: 71.6%) without Yellow Sand and 0.083$\mug/m^3$ (CP/TA: 67.4%) in winter, respectively. Compared with fine particles, all of them were higher. It indicated that the origin of coarse particles in urban air was not related to anthropogenic source. The concentration of Fe was influenced by Yellow Sand and contributed to air pollution.

  • PDF

Change in Community Composition and Soil Carbon Stock Along Transitional Boundary in a Sub-Tropical Forest of Garhwal Himalaya

  • Kumar, Munesh;Kumar, Manish;Saleem, Sajid;Prasad, Sunil;Rajwar, G.S.
    • Journal of Forest and Environmental Science
    • /
    • v.29 no.3
    • /
    • pp.194-199
    • /
    • 2013
  • The aim of the present study was to assess the effect of transitional boundary on community composition and soil carbon stock. Five vegetation types were recognized horizontally along the transitional strip based on the dominance of tree species i.e., Pure Anogeissus latifolia forest (P.AL), mixed Pinus roxburghii and Lannea coromandelica forest (M.PR&LC), pure Pinus roxburghii forest (P.PR), mixed Pinus roxburghii and Lannea coromandelica (M.PR&LC) and pure Anogeissus latifolia forest (P.AL). The results revealed that Anogeissus latifolia was reported dominant tree in the outer transitional boundaries of the forest, which reduced dominance of trees towards middle where Pinus roxburghii was found dominant. The soil carbon stock was reported higher in the Anogeissus latifolia dominant forest and reduced with the dominance of Pinus roxburghii in the middle site. Both the species are growing close to one another and competing for survival, but the aggressive nature of Anogeissus latifolia particular in this region may change new growth of Pinus roxburghii and will enhance soil carbon stock. But high anthropogenic pressure on Anogeissus latifolia tree species could be limited chance to further its flourish.

Size-segregated Sources of Aerosol Estimated by Factor Analysis-For the Measurement using Drum Impactor at Gosan, Jeju Island in May 2002 (인자분석을 통한 대기 입자상 물질의 입경별 발생원 추정-Drum impactor를 이용한 2002년 5월 제주도 고산지역 측정을 중심으로)

  • Han, J.S.;Moon, K.J.;Kong, B.J.;Ryu, S.Y.;Kim, Y.J.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.5
    • /
    • pp.685-695
    • /
    • 2004
  • Size-segregated measurements of aerosol composition are used to estimate the transport of natural and anthropogenic aerosols at Gosan site during May 2002. The results of measurement show that not only soil dust but also anthropogenic aerosols, including sulfur and enriched trace metals such as Pb, Zn, Cu, are transported to Gosan. This study combines the size- and time-resolved aerosol composition measurements with factor analysis in order to identify some source materials. As a result, coarse particles (2.5${\mu}m$~12${\mu}m$) are influenced by soil, sea-salt, coal, coal combustion, and nonferrous sources. But fine particles have different sources. The fine particles, which the diameter is from 0.56${\mu}m$ to 2.5${\mu}m$, are more affected by road dust, oil combustion, industry. municipal incineration, and ferrous metal sources. The very fine particles, from 0.09${\mu}m$ to 0.56${\mu}m$, mainly supplied by biomass burning, oil combustion, nonferrous and ferrous metal sources.

Application of stoichiometric method in the assessment of groundwater chemistry in a coastal region having complex contaminant sources

  • Rajmohan Natarajan;Kim, Kang-Joo;Hwang, Gab-Soo;Kim, Hyun-Jung;Cho, Min-Joe
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.499-502
    • /
    • 2004
  • Groundwater chemistry in a coastal region having complex contaminant sources was investigated. Water analysis data for 197 groundwater samples collected from the uniformly distributed sixty-six wells were used. Chemical analysis rand results indicate that groundwaters show wide concentration ranges in major inorganic ions, reflecting complex hydrochemical processes of pollutants. Due to the complexity of groundwater chemistry, Results illustrate that thirty five percent of the wells do not fit for drinking based on nitrate and chloride concentration in the study area. the samples were classified into four groups based on Cl and NO$_3$ concentrations and the processes controlling water chemistry were evaluated based on the reaction stoichiometry. The results explained the importance of mineral weathering, anthropogenic activities (nitrification and oxidation of organic matters), and Cl-salt inputs (seawater, deicer, NaCl, etc.) on groundwater chemistry. It was revealed that mineral dissolution is the major process controlling the water chemistry of the low Cl and NO$_3$ group (Group 1). Groundwaters high in NO$_3$ (Groups 2 and 4) are acidic in nature, and their chemistry is largely influenced by nitrification, oxidation of organic matters and mineral dissolution. In the case of chloride rich waters (Group 3), groundwater chemistry is highly influenced by mineral weathering and seawater intrusion associated with cation-exchange reactions.

  • PDF

Variation of TSP Compositions in Accordance with the Pathways of Inflowing Air Mass at Jeju Island (제주지역 TSP의 기류 유입경로별 조성 변화)

  • Ko, Hee-Jung;Kim, Won-Hyung;Lee, Min-Young;Song, Jung-Min;Kang, Chang-Hee;Kim, Yong-Pyo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.3
    • /
    • pp.347-357
    • /
    • 2011
  • The TSP aerosols were collected at Gosan site of Jeju Island between 2003 and 2007, and their aerosol components were analyzed to examine the variations of chemical compositions with the corresponding pathways of inflowing air parcels. According to the comparison of seasonal aerosol compositions, the soil-originated components showed remarkably high concentrations during spring season. On the other hand, the concentrations of anthropogenic components were somewhat high in spring and summer seasons, but low in fall season. Based on the comparison of TSP compositions in relation to the pathways of inflowing air mass, the concentrations of anthropogenic components (nss-$SO_4^{2-}$, S, $NO_3^-$), soil-originated components (nss-$Ca^{2+}$, Al, Fe, Ca), and the heavy metals (e,g., Mn, Zn, Cr, Pb, Cu, Cd, etc.) have relatively increased with the air mass moving from China continent into Jeju area. Meanwhile, the marine-originated components showed an increasing trend with the air mass coming from North Pacific Ocean. In the seasonal and sectional comparison, the nss-$SO_4^{2-}$, $NO_3^-$, nss-$Ca^{2+}$, and Al showed comparatively high concentrations when the air mass moved from China continent during all seasons. Especially, the $NO_3^-$, nss-$Ca^{2+}$, and Al concentrations were somewhat high when the air mass moved from Korean Peninsula during summer season. It was also recognized that the Na+ concentration were high, when the air mass moved from Pacific Ocean through all seasons.

Radon and TSP Concentrations in the Ambient Air of Gosan Area, Jeiu Island between 2001 and 2004 (제주도 고산지역의 라돈 및 TSP 에어로졸 농도 특성: 2001~2004년 측정)

  • Kang, Chang-Hee;Ko, Hee-Jung;Zahorowski, Wlodek
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.5
    • /
    • pp.612-624
    • /
    • 2007
  • The real-time monitoring of radon ($^{222}Rn$) concentrations has been carried out to evaluate its ambient background concentration levels in Gosan site, Jeju Island between January 2001 and December 2004. In addition, the atmospheric TSP aerosols have been sampled, and their ionic and metallic components were analyzed to understand the characteristics of air pollution. The mean concentration of radon was $3,121{\pm}1,627\;mBq/m^3$, and the seasonal mean concentrations for spring, summer, fall and winter seasons were 2,898, 2,398, 3,571 and $3,646\;mBq/m^3$, respectively, The hourly concentrations have shown the highest value at 7 a.m. and the lowest value at 2 p.m. From the backward trajectory analyses, the radon concentrations have increased, when the air parcels were moved from the Chinese continent to Jeju area. On the other hand, they have decreased, when the air parcels from the North Pacific Ocean. In the analytical results of ionic species and metal elements of TSP aerosols, the concentrations of $nss-{SO_4}^{2-}$ and S were higher in June and March. Meanwhile, the concentrations of other anthropogenic species as well as soil components were mostly higher in March and April. On the basis of factor analysis, the TSP aerosols at Gosan area were largely influenced by soil sources, followed by anthropogenic sources and marine sources. From the result of backward trajectory analyses, the concentrations of $nss-{SO_4}^{2-},\;{NO_3}^-$, Al and Ca were mostly higher, when the air parcels moved from Chinese continent to Jeju area. On the other hand, their concentrations were lower, when the air parcels drifted from the North Pacific Ocean.

Hydrogeochemical and geostatistical study of shallow alluvial groundwater in the Youngdeok area

  • Kim, Nam-Jin;Yun, Seong-Taek;Kwon, Man-Jae;Kim, Hyoung-Soo;Kim, Chang-Hoon;Koh, Yong-Kwon
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.11a
    • /
    • pp.232-236
    • /
    • 2000
  • Multi-regression statistical analyses were applied for the water quality data of shallow alluvial ground water (n = 47) collected from the Youngdeok area, in order to quantitatively generalize the natural (non-anthropogenic) causes of regional water quality variation. Seven samples having the high contamination index ( $C_{a}$ > 3) reflect the striong effects by anthropogenic activity. Most of the alluvial groundwaters have acquired their quality primarily due to the dissolution of carbonate minerals. The results of multi-regression analysis show that chlorine is mainly derived from seawater effect. Sulfur isotopic compositions of dissolved sulfur and the S $O_4$/Cl ratio also enable us to discriminate the samples (n = 18) which are affected by atmospheric input of marine aerosol (sea-spray) and also by mixing between freshwater and seawater. Hydrogen and oxygen isotope data of the samples collected lie close to the local meteoric water line obtained from nearby Pohang city but has lower slope (5.45) on the $\delta$D-$^{18}$ O plot, indicating that alluvial groundwater was recharged from infiltrated meteoric water which has undergone some degree of kinetic evaporation. The estimated initial isotopic composition of the recharged water ($\delta$D = -74.8$^{0}$ /$_{00}$, $\delta$$^{18}$ O = -10.8$^{[-1000]}$ /$_{[-1000]}$ ) suggests that the alluvial ground water recharge largely occurs during summer storm events.s.s.

  • PDF

Chemical Composition Characteristics of Precipitation at Two Sites in Jeju Island

  • Kang, Chang-Hee;Kim, Won-Hyung;Lee, Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.3
    • /
    • pp.363-368
    • /
    • 2003
  • The major ionic components of precipitation collected at the 1100 Site of Mt. Halla and Jeju city have been determined. The reliability of the analytical data was verified by the comparison of ion balances, electric conductivities and acid fractions; all of their correlation coefficients were above 0.94. Ionic strengths lower than $10^{-4}$ M were found in 53% of the 1100 Site samples and 28% of the Jeju city samples. Compared with other inland areas, the wet deposition of $Na^+,\;Cl^-\;and\;Mg^{2+}$ was relatively larger, but that of $NH_4^+,\;nss-SO_4^{2-}$(non-sea salt sulfate) and $NO_3^-$ was lower. Especially the wet deposition increase of $Ca^{2+}$ in the spring season supports the possibility of the Asian Dust effect. The acidification of precipitation was caused mostly by $SO_4^{2-}\;and\;NO_3^-$ in the Jeju area, and the organic acids have contributed only about 7% to the acidity. The neutralization factors by NH₃were 0.47 and 0.48, and that of CaCO₃was 0.31 and 0.25 at the 1100 Site and Jeju city, respectively. Investigation into major influencing sources on precipitation components by factor analysis showed that the precipitation at the 1100 Site had been influenced mostly by an anthropogenic source, followed by soil and seawater sources. The precipitation at Jeju city was mainly influenced by oceanic sources, followed by anthropogenic and soil sources.