• Title/Summary/Keyword: Antennas

Search Result 2,053, Processing Time 0.031 seconds

An Efficient Spectrum Sensing Scheme for Cognitive Radio Systems with Multiple Antennas (다중 안테나 기반 인지 무선 시스템에서 효율적인 스펙트럼 센싱 기법)

  • Noh, Go-San;Lee, Je-Min;Hong, Dae-Sik
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.185-186
    • /
    • 2008
  • We propose an efficient spectrum sensing scheme for cognitive radio systems with multiple antennas. By utilizing the property of multiple receive antennas, spectrum sensing without idle period is possible. Simulation results show that the detection probability is enhanced with the number of receive antennas, which explains the effect of the spatial diversity.

  • PDF

MAC Protocols for Ad Hoc Networks with Directional Antennas: Overview and Comparison

  • Khatiwada, Bipula;Moh, Sang-Man
    • Information and Communications Magazine
    • /
    • v.28 no.12
    • /
    • pp.69-82
    • /
    • 2011
  • In recent years, the employment of directional antennas in ad hoc networks has significantly increased. MAC protocols for ad hoc networks with directional antennas have the potentiality of spatial reuse, large coverage range and network capacity, which mitigates the negative effects associated with omnidirectional antenna systems. However, they suffer from some issues such as hidden terminal problems, deafness, neighbor discovery, flaws with directional carrier sensing, etc. In this paper, we have surveyed the MAC protocols for ad hoc networks with directional antennas, which have been published in the literature, and compared them qualitatively in terms of major characteristics and network performances.

A Differential SFBC-OFDM for a DMB System with Multiple Antennas

  • Woo, Kyung-Soo;Lee, Kyu-In;Paik, Jong-Ho;Park, Kyung-Won;Yang, Won-Young;Cho, Yong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.2A
    • /
    • pp.195-202
    • /
    • 2007
  • A differential space-frequency block code - orthogonal frequency division multiplexing (SFBC-OFDM) scheme as a multiple-input multiple-output (MIMO) transmission technique for next-generation digital multimedia broadcasting (DMB) is proposed in this paper. A linear decoding method for differential SFBC, which performs comparably to the ML decoding method, is derived for the cases of two or four transmit antennas. A simple table lookup method is proposed to improve the efficiency of the encoding/decoding process of DSFBC for the case of non-constant modulus constellations. A DMB MIMO channel model, developed by extending the 3GPP MIMO model to fit DMB environments, is used to compare BER performances of differential space block code schemes for various channel environments. Simulation results show that the differential SFBC-16QAM scheme using either four transmit antennas with one receive antenna or two transmit antennas with two receive antennas achieves a performance gain of 12dB than that of the conventional DQPSK scheme, even with a data rate twice faster.

Distributed Quasi-Orthogonal Space-Time Block Code for Four Transmit Antennas with Information Exchange Error Mitigation

  • Tseng, Shu-Ming;Wang, Shih-Han
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.10
    • /
    • pp.2411-2429
    • /
    • 2013
  • In this paper, we extend the case of information exchange error mitigation for the distributed orthogonal space-time block code (DOSTBC) for two transmit antennas to distributed quasi-orthogonal space-time block code (DQOSTBC) for four transmit antennas. A rate 1 full-diversity DQOSTBC for four transmit antennas is designed. The code matrix changes according to different information exchange error cases, so full diversity is maintained even if not all information exchange is correct. We also perform analysis of the pairwise error probability. The performance analysis indicates that the proposed rate 1 DQOSTBC outperforms rate 1/2 DOSTBC for four transmit antennas at the same transmission rate, which is confirmed by the simulation results.

MIMO Channel Capacity and Configuration Selection for Switched Parasitic Antennas

  • Pal, Paramvir Kaur;Sherratt, Robert Simon
    • ETRI Journal
    • /
    • v.40 no.2
    • /
    • pp.197-206
    • /
    • 2018
  • Multiple-input multiple-output (MIMO) systems offer significant enhancements in terms of their data rate and channel capacity compared to traditional systems. However, correlation degrades the system performance and imposes practical limits on the number of antennas that can be incorporated into portable wireless devices. The use of switched parasitic antennas (SPAs) is a possible solution, especially where it is difficult to obtain sufficient signal decorrelation by conventional means. The covariance matrix represents the correlation present in the propagation channel, and has significant impact on the MIMO channel capacity. The results of this work demonstrate a significant improvement in the MIMO channel capacity by using SPA with the knowledge of the covariance matrix for all pattern configurations. By employing the "water-pouring algorithm" to modify the covariance matrix, the channel capacity is significantly improved compared to traditional systems, which spread transmit power uniformly across all the antennas. A condition number is also proposed as a selection metric to select the optimal pattern configuration for MIMO-SPAs.

Optimum Return Loss of Right-Angle Triangular Slot Antenna

  • Tangkaphiphop, K.;Anantrasirichai, N.;Wakabayashi, T.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.466-469
    • /
    • 2004
  • In this paper, we improve the matching impedance of antennas by inserting parasitic slots on the ground plane of right-angle triangular slot antennas. The designed antennas characteristics are analyzed by using Finite Different Time Domain (FDTD) method, the specific design frequency is 10 GHz and match impedance is 50 ohms. Simulation results show that the efficient of return loss and radiation patterns are improved and enhance. In this case, the right-angle triangular slot antennas with parasitic slots have matching impedance better than antennas without parasitic slots.

  • PDF

An Adaptive-Harvest-Then-Transmit Protocol for Wireless Powered Communications: Multiple Antennas System and Performance Analysis

  • Nguyen, Xuan Xinh;Do, Dinh-Thuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.4
    • /
    • pp.1889-1910
    • /
    • 2017
  • This paper investigates a protocol so-called Adaptive Harvest Then Transmit (AHTT) for wireless powered communication networks (WPCNs) in multiple-input single-output (MISO) downlink systems, which assists in transmitting signals from a multi-antenna transmitter to a single-antenna receiver. Particularly, the power constrained relay is supplied with power by utilizing radio frequency (RF) signals from the source. In order to take advantage of multiple antennas, two different linear processing schemes, including Maximum Ratio Combining (MRC) and Selection Combination (SC) are studied. The system outage capacity and ergodic capacity are evaluated for performance analysis. Furthermore, the optimal power allocation is also considered. Our numerical and simulation results prove that the implementation of multiple antennas helps boost the energy harvesting capability. Therefore, this paper puts forward a new way to the energy efficiency (EE) enhancement, which contributes to better system performance.

Optimum Configuration of Multiple Antennas for the Combinded System with Tx. Diversity and Beamforming

  • Yu, Hyun-Hye;Liu, Li-Jun;Lim, Myoung-Seob
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.7A
    • /
    • pp.727-732
    • /
    • 2008
  • The transmit diversity as well as beamforming can increase the performance of wireless communication systems. It is well known that the requirement for the spacing between the neighboring antennas in transmit diversity and beamforming is contradictive to each other. Therefore it is necessary to find the optimum configuration of multiple antennas for getting the maximum performance under the condition that the total number of antennas at transmitter site and the total power of transmitter are fixed. In this paper, the procedure for finding the optimum configuration of multiple antennas was derived through searching the maximum capacity and BER in the combined system with the transmit diversity (Tx diversity) and beamforming.

Carbon nanotube antennas analysis and applications: review

  • El-sherbiny, Sh.G.;Wageh, S.;Elhalafawy, S.M.;Sharshar, A.A.
    • Advances in nano research
    • /
    • v.1 no.1
    • /
    • pp.13-27
    • /
    • 2013
  • Carbon nanotube characterized by additional inductive effect as compared with the traditional conductors like copper wires of the same size. Consequently, carbon nanotubes have high characteristic impedance and slow wave propagation in comparison with traditional conductors. Due to these characteristics, carbon nanotubes can be used as antenna. In view of this, we describe and review the present research progress on carbon nanotube antennas. We present different analysis models and results which are developed to investigate the characteristics of CNT antennas. Then we conclude by summarizing the characteristics of CNT antennas and specifying the operating frequency limit.

A Study on the Array Antenna for Satellite Broadcasting Receiver (위성방송 수신용 배열안테나에 관한 연구)

  • 신용주;강기조;이학용;김종규;김종헌;이종철;김남영;박면주;이병제
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.8
    • /
    • pp.787-795
    • /
    • 2003
  • Three types of array antennas are developed for broadcasting band of Koreasat III. First, the specification of the array antenna is decided. Second, characteristics and advantages of three types of antennas using the radial waveguide characteristics is investigated and discussed. Third, design method fur those antenna is studied to meet antenna specifications, and then antennas are designed and tested. Finally, it is concluded that these types of antennas can be efficiently design compared to both parabola antennas and microstrip array within the limited size.