• Title/Summary/Keyword: Antenna Substrate

Search Result 581, Processing Time 0.026 seconds

Folded Loop Antennas for RFID Appilication (RFID 응용을 위한 폴디드-루프 안테나)

  • Choi, Tea-Il
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.2 no.4
    • /
    • pp.199-202
    • /
    • 2007
  • In this paper, we examined the operating principle of a passive tag antenna for RFID system in UHF band. Based on the study, we proposed a novel RFID tag antenna which adopts the inductively coupled feeding structure to match antenna impedance to a capacitively loaded commercial tag chip. The proposed tag antenna consists of microstrip lines on a thin PET substrate for low-cost fabrication. The detail structure of the tag antenna were optimized using a full electromagnetic wave simulator of IE3D in conjunction with a Pareto genetic algorithm, and the size of the tag antenna can be reduced up to kr=0.27(2 cm2). We built some sample antennas and measured the antenna characteristics such as a return loss, an efficiency, and radiation patterns. The readable range of the tag antenna with a commercial RFID system showed about 1 to 3 m.

  • PDF

Design of a Compact LPDA Antenna using Inverted-L Shaped Dipole Elements (Inverted-L 형태의 다이폴 소자를 이용한 소형 LPDA 안테나 설계)

  • Yeo, Jun-Ho;Lee, Jong-Ig
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.7A
    • /
    • pp.678-682
    • /
    • 2011
  • In this paper, a compact log periodic dipole array (LPDA) antenna operating from 1 to 6 GHz is studied. Inverted-L shaped dipole elements are used to miniaturize the lateral size of an LPDA antenna and the spacing factor is also decreased to reduce the total length of the LPDA antenna. As the top-loading length of the inverted-L shaped dipole elements is increased, the width of the LPDA antenna is decreased but the bandwidth and the gain of the antenna are decreased. The fabricated compact LPDA antenna is printed on FR4 substrate With a dielectric constant of 4.4 and a thickness of 1.6 mm, and its size is reduced to 32% in width and 49% in length compared to a standard LPDA antenna.

A Two-Element Circularly-Polarized Antenna Array for UHF-Band RFID Reader Applications

  • Park Joung-Min;Kim Yun-Mi;Ahn Bierng-Chearl;Park Chan-Sik;Cha Eun-Jong
    • Journal of electromagnetic engineering and science
    • /
    • v.6 no.1
    • /
    • pp.36-46
    • /
    • 2006
  • In this paper, we present a two-element circularly-polarized antenna array for UHF-band RFID reader applications. The antenna element in the array is a comer-truncated rectangular patch placed on a thick plastic-foam dielectric. The patch is fed on one of its edges by a microstrip line printed on a separate thin substrate. The array antenna is fed by a microstrip power divider. Parametric studies on the patch are carried out, from which an optimum design of a single antenna element is derived. The element spacing and the feed network of the array are investigated. A commercial electromagnetic software is employed in the analysis and design of the antenna. The designed array is fabricated and tested. Measurements show good performance characteristics of the fabricated antenna: a 11.2-dBi gain, a reflection coefficient of - 14 dB, an axial ratio less than 3 dB over 3-dB beamwidths of 40 and 60 degrees on two principal planes.

A study on characteristics of magneto-dielectrics as the antenna substrate (안테나 기판으로 자성유전체 특성에 관한 연구)

  • Lee, Young-Soon;Yoo, Jin-Ha;Lee, Ga-Young;Cho, Yun-Ki;Kim, Ui-Jung;Oh, Byoung-Hee
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.6
    • /
    • pp.838-845
    • /
    • 2009
  • In order to obtain magneto-dielectrics with various permmittivity and permeability which could be used as the antenna substrate, various magneto-dielectrics compounded of dielectric materials(such as silicon and epoxy resin) and magnetic materials(such as carbonyl iron, barium and strontium powder) were fabricated. The relative permittivity and permeability of those were measured by use of HP 4291B impedance analyzer. Based upon the measured results, inverted-F meander monopole antennas(IFA) which were printed on the magneto-dielectric substrates fabricated as film type were designed and fabricated to investigate into variations of antenna characteristics such as the resonant frequency and impedance bandwidth in comparison with use of dielectric substrate. Some simulated and measured results for the designed IFA were presented. Characteristics of magneto-dielectrics which are different according as the choice of magnetic material or the composition ratio between magnetic material and dielectric material is different have been discussed.

  • PDF

SIW-Based Linearly Polarized S-Band Antenna for SDR (선형편파를 갖는 S-대역 SDR용 SIW 안테나 설계)

  • Han, Jun-Yong;Yoon, Seong-Sik;Lee, Jae-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.2
    • /
    • pp.216-219
    • /
    • 2016
  • In this paper, the SIW(Substrate Integrated Waveguide)-based feeding antenna for the application of SDR(Software Defined Radar) is designed and manufactured. It is usually well-known that SIWs are easily integrated on PCB and have low transmission loss toward high powered input signal. Also, it is recommended that SIWs are strongly immunized to Electromagnetic Interferences(EMI). In particular, the manufactured antennas are loaded on the USRP(Universal Software Radio Peripheral) platform and employed to detect target RCS as an experiment in this paper. The operating frequency of the proposed antenna is in ISM(Industrial, Scientific and Medical) band(2.4~2.48 GHz) and the measured gain is over 8 dBi at 2.44 GHz.

The Characteristic of L-shape and Triangular Slot Antenna

  • Narkcharoen, K.;Charkrit, P.;Anantrasirichai, N.;Wakabayashi, T.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1680-1683
    • /
    • 2003
  • To describe the performance of an antenna, some parameters are necessary. Some of the parameters are interrelate and not all of them must be specified for complete description of antenna performance. The parameters in characteristics of printed antenna for this analysis are radiation pattern, input impedance, VSWR, S parameter and electromagnetic field. In this paper we will consider two shaped of slot antennas one is triangular slot antenna and other is L - shape slot antenna for compare the radiation pattern, return loss, and VSWR. Two slot antennas are designed to have a resonant frequency at 10 GHz. The microstrip line is designed to be 50 ohms in order to match the measurement system, it has the substrate of the thickness = 1.52 mm and dielectric constant (${\varepsilon}_r$) 2.17. The problem space in the FDTD analysis are $60{\times}123{\times}100$ cells for L-shape slot antenna and $50{\times}171{\times}120$ cells for triangular slot antenna with the cell dimensions ${\Delta}x=0.152\;mm.$, ${\Delta}y={\Delta}z=0.15\;mm.$

  • PDF

Dual-band Compact CPW-fed Slot Antenna for WLAN applications (WLAN 시스템용 이중 대역 CPW 소형 슬롯 안테나)

  • Choi, In-Tae;Shin, Ho-Sub
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • In this paper, the compact CPW-fed slot antenna for WLAN applications is proposed. While the proposed antenna with size of only $20{\times}18{\times}1mm^3$ is consisted of double stub and folded slot, the antenna for 2.4 GHz band and 5 GHz band is designed and fabricated with optimized parameters obtained by simulation. Proposed antenna is fabricated with FR-4 substrate to the thickness of 1.0 mm. By obtaining the measured return loss level of < -10 dB at dual-band, we showed that it is operated as antenna for WLAN applications, and then it is also expected to be usable as antenna for RFID.

Design of a Polygon Slot Antenna with a Polygon Tuning Stub for Ultra-Wideband Applications

  • Lee, Ju Ho;Choi, Young Gyu;Yoon, Joong Han
    • Journal of information and communication convergence engineering
    • /
    • v.15 no.1
    • /
    • pp.1-6
    • /
    • 2017
  • In this study, we develop and experimentally evaluate an ultra-wideband (UWB) slot antenna with a polygon tuning stub. The proposed antenna consists of a polygon slot with a $50-{\Omega}$ feed line. The effects of various parameters of the polygon-shaped slot and the polygon tuning stub on UWB applications are investigated. The optimum parameters were obtained using the Ansys HFSS software. The results of the studies on the surface current distributions of the operating frequency bands were discussed. The proposed antenna is fabricated on an inexpensive FR-4 substrate with the overall dimensions of $28.0mm{\times}30.0mm$. The measured results confirm that the proposed antenna covers frequencies from 2.58 GHz to 13.27 GHz, which is the UWB frequency range. Further, the proposed UWB antenna also exhibited that omni-directionality in the H-plane gain varied from 1.185 to 7.246 dBi. The good antenna characteristics of the proposed antenna make it suitable for UWB system applications.

Compact Dual-Band Half-Ring-Shaped Bent Slot Antenna for WLAN and WiMAX Applications

  • Yeo, Junho;Lee, Jong-Ig
    • Journal of information and communication convergence engineering
    • /
    • v.15 no.4
    • /
    • pp.199-204
    • /
    • 2017
  • A compact dual-band half-ring-shaped (HRS) bent slot antenna fed by a coplanar waveguide for wireless local area network (WLAN) and worldwide interoperability for microwave access (WiMAX) applications is presented. The antenna consists of two HRS slots with different lengths and widths. The two HRS slots are connected through an arc-shaped slit, and the upper HRS slot is bent in order to reduce the size of the antenna. The optimized dual-band HRS bent slot antenna operating in the 2.45 GHz WLAN and 3.5 GHz WiMAX bands is fabricated on an FR4 substrate with dimensions of 30 mm by 30 mm. The slot length of the proposed dual-band slot antenna is reduced by 35%, compared to a conventional dual-band rectangular slot antenna. Experimental results show that the proposed antenna operates in the frequency bands of 2.40-2.49 GHz and 3.39-3.72 GHz for a voltage standing wave ratio of less than 2, and measured gain is larger than 1.4 dBi in the two bands.

Design and Fabrication of 2.65GHz Antenna for Satellite-DMB (위성 DMB용 2.65GHz 안테나 설계 및 제작)

  • Ahn, Je-Sung;Ha, Deock-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.12
    • /
    • pp.2217-2226
    • /
    • 2007
  • In this paper, we propose a microstrip antenna with sufficient impedance bandwidths and gains for the 2.65GHz antenna which can be used in the satellite digital multimedia broadcasting. The prposed 2.65GHz satellite DMB bandwidth microstrip antenna is implemented on a substrate, which is small enough to be installed in practical mobile phones, and described simulation feature using by CST MicroWave Studio program. And also, we measured the antenna performance between the proposed antenna and the commercial antenna. From the analysis, it was found that the radiation pattern of proposed antenna is superior to the commercial antenna and an acceptable frequency band is more wider than the existing products.