• 제목/요약/키워드: Antenna Reflector

Search Result 223, Processing Time 0.039 seconds

Realization of High Impedance Surface Characteristics Using a Periodically Transformed Artificial Magnetic Conductor Structure and Reduction Technique of Specific Absorption Rate

  • Lee, Seungwoo;Rhee, Seung-Yeop;Kim, Pan-Yeol;Kim, Nam
    • Journal of electromagnetic engineering and science
    • /
    • v.13 no.2
    • /
    • pp.113-119
    • /
    • 2013
  • We developed a transformed, symmetrical, mushroom-like surface without via holes in cells focused on a 2.4-GHz WLAN band. Each slot in the novel type structure plays a key role in modeling at the desired frequencies. The designed artificial magnetic conductor (AMC) has several advantages, including a small size, a wider bandwidth, a short reflecting distance to the antenna, and easy fabrication because there are no via holes. Overall dimensions of the AMC cell are 21 mm $(Width){\times}21mm$ $(Height){\times}2.6mm$ (Thickness), and the bandwidth is about three times wider (11.7%) compared to that of a conventional AMC (4.0%). For evaluating the performance of the proposed structure, a reflector, which periodically consists of the designed AMC cells, was developed. The antenna with the investigated AMC reflector not only works within a quarter of the wavelength because of the extremely high wave impedance generated by the AMC cells on the surface of the structure but also reduces the specific absorption rate (SAR). Electromagnetic field (EMF) exposure to a human phantom was analyzed by applying the designed reflector to the 2.4-GHz dipole antenna in a tablet PC. The calculated peak SAR averaged over 1 g was 0.125 W/kg when the input power was 1 W and the antenna was located at 20 cm from the human phantom. However, the SAR value was only 0.002 W/kg (i.e., 98.4% blocked) when the designed reflector was inserted in front of the antenna.

A study on the design for mobile satellite receiver antenna (이동체의 위성 수신용 안테나 설계에 관한 연구)

  • Ju, Sang-Ho;Ko, Jeong-Ho;Kim, Young-Goo;Choi, Ik-Guen
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.7
    • /
    • pp.1529-1536
    • /
    • 2010
  • In this paper, we propose a Axially displaced ellipse gregorian antenna with conical feed horn operating in Ku-band. For fast searching satellite position, it is designed the sub-reflector rotates about $1.5^{\circ}$ tilted by the central axis. the curvature and feed center of the main-reflector and sub-reflector are optimized to achieve maximum antenna efficiency. The designed reflector antenna shows the gain of 33dB and the cross polarization level of less than -21dB and the side-lobe level of less than -14 dB at 12.2 GHz. and C/N ratio of 19dB is proved by reception experiment of Koreasat with fabricated antenna.

Flexible Multibody Dynamic Analysis of the Deployable Composite Reflector Antenna (전개형 복합재 반사판 안테나의 유연 다물체 동역학 해석)

  • Lim, Yoon-Ji;Oh, Young-Eun;Roh, Jin-Ho;Lee, Soo-Yong;Jung, Hwa-Young;Lee, Jae-Eun;Kang, Deok-Soo;Yun, Ji-Hyeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.10
    • /
    • pp.705-711
    • /
    • 2019
  • Dynamic behaviors of the deployable composite reflector antenna are numerically and experimentally investigated. Equations of the motion are formalized using Kane's equation by considering multibody systems with two degrees of freedom such as folding and twisting angles. To interpret structural deformations of the reflector antenna, the composite reflector is modeled using a beam model with the FSDT(First-order Shear Deformation Theory). To determine design parameters such as a torsional spring stiffness and a damping coefficient depending on deployment duration, an inverted pendulum model is simply applied. Based on the determined parameters, dynamic characteristics of the deployable reflector are investigated. In addition, its results are verified and compared through deployment tests using a gravity compensation device.

Analysis of Radiation Characteristics on Offset Gregorian Antenna Using Jacobi-Bessel Series (Jacobi-Bessel 급수를 이용한 옵셋 그레고리안 안테나의 복사특성 해석)

  • Ryu, Hwang
    • The Journal of Engineering Research
    • /
    • v.1 no.1
    • /
    • pp.5-14
    • /
    • 1997
  • The purpose of thesis is to analyze the radiation characteristics of an offset gregorian antenna in order to design the satellite-loaded antenna. In order to compute the radiation pattern of the sub-reflector, the reflected wave is obtained by GO(Geometric Optics) at an arbitrary shaped sub-reflector. Then the total radiation EM wave is obtained by summing the diffracted fields obtained by UTD(Uniform Geometrical Theory of Diffraction) and the GO fields. In order to calculate the far field radiation pattern of the main reflector, the radiation integral equation is derived from the induced current density on reflector surface using PO(Physical Optics). The kernel is expanded in terms of Jacobi-Bessel series for increasing the computational efficiency, then the modified radiation integral is represented as the double integral equation independent of observation points. When the incident fields are assumed to be x-or y-polarized field, the characteristics of radiation patterns in the gregorian antenna is analyzed in case of the main reflector having the focal length of 62.4$\lambda$, diameter of 100$\lambda$, and offset height of 75$\lambda$, and the sub-reflector having the eccentricity of 0.501, the inter focal length og 32.8$\lambda$, the horn axis angle of $9^{\circ}$ and the half aperture angle of $15.89^{\circ}$. The cross-polarized level and side lobe level in the offset geogorian reflector are reduced by 30dB and 10dB, respectively, in comparison with those of the offset parabolic antenna.

  • PDF

Small Size Directional Dipole Antenna for Mobile Communications (이동통신용 소형 방향성 다이폴 안테나)

  • Lee, Kwang-Jae;Woo, Duk-Jae;Kim, Sang-Jin;Lee, Jae-Wook;Lee, Taek-Kyung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.12
    • /
    • pp.1416-1426
    • /
    • 2008
  • In this paper, we present a small size and multiband directional dipole antenna for mobile communication repeaters. In the omni-directional dipole antenna, a planar reflector under the dipole provides improved directivity in front-direction with wide beamwidth. In order to miniaturize the directive dipole, the size of the reflector is reduced. A vertical stub on the reflector is proposed to enhance the front-directivity of the radiation pattern and mitigate the backward radiation due to the reduced reflector. Furthermore, we use horizontal stubs on edge of vertical stub to obtain additional reduction of the antenna size. To meet the current demand of wireless communication service, the designed antenna shows wideband characteristic by employing electromagnetic coupled two-dipoles with dual-resonance frequencies.

Design of Dipole Array Antennas for PCS/IMT-2000 (PCS/IMT-2000을 위한 다이폴 배열 안테나의 설계)

  • 최학윤
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.9
    • /
    • pp.873-881
    • /
    • 2002
  • In this paper, the rectangular reflector antenna with 8-dipole array for PCS band (1,750 MHz ~ l,870 MHz) and IMT-2000 band(1,885 MHz ~ 2,200 MHz) is designed and the radiation characteristics are analyzed using the method of moments and HFSS(High Frequency Structure Simulator). To verify the analysis results, rectangular reflector antenna with 8-dipole array is fabricated and the calculated results are compared with the measured results. The measured results show good agreement with the calculated results. As a result of measurements, bandwidth(VSWR< 1.5) of 450 MHz is achieved at PCS and IMT-2000 band and gain is 16 dBi. The designed antenna can be used as the base station antenna for PCS/IMT-2000.

Analysis of the Radiation Characteristics of the Parabola Reflector Antenna (포물면 반사판 안테나의 복사 특성 해석)

  • Cho, Tae-Beam;Ryu, Hwang
    • The Journal of Engineering Research
    • /
    • v.3 no.1
    • /
    • pp.147-158
    • /
    • 1998
  • The purpose of thesis is to analyze the radiation characteristics of the parabola reflector antenna. The equivalent sources are used to compute the radiation fields in the far-zone utilizing the aperture integration. Using these results, we obtain the efficiency parameters associated with reflector : aperture efficiency, spillover efficiency, as the function of F/D, diameter beam squint angle and misarrangement.

  • PDF

포물면경 반사기 안테나의 Defocusing에 관한 연구

  • 한석태;홍의석;오영환
    • Proceedings of the Korean Institute of Communication Sciences Conference
    • /
    • 1986.04a
    • /
    • pp.184-188
    • /
    • 1986
  • The gain variations of paraboloid reflector antenna with an axially and perpendicularly defocused feed are investigated using the Huygens-Fresnel Principle. The theoretical calculations and the experimental for the reflector antenna with an axially defocused feed are compared. Although there were about 3dB difference between two results in a range from focal point to 2.0 wave-length, we could know that it was property approached to theoretical results. However, when the magnitude of defocusing is increased, the differences are also increased because of the influence by a weak received signal and interference of external noises. In addition, it can be shown that gain variations are acutely decreased more in perpendicular defocusing than in axial defocusing in the paraboloid reflector antenna.

  • PDF

The Characteristic Analysis of the Cross-shaped Microstrip Slot Antenna with the Reflector for Permittivity and Height of Dielectrics

  • Jang, Yong-Woong;Shin, Ho-Sub;Oh, Dong-Jin
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.183-186
    • /
    • 2000
  • We analyzed the cross-shaped microstripline-fed slot antenna with the reflector using FDTD(Finite-Difference Time-Domain) method in this paper. The proposed antenna uses RR Duroid-5880 substrate(relative permittivity 2.2 and height(1.578 mm) of dielectrics), and compares the optimized results of other kind substrates. The maximum bandwidth of the proposed antenna is from 1.91 GHz to 5.21 GHz, which is approximately 1.437 octave for the VSWR $\leq$ 2. It was found that the bandwidth of the antenna depend highly on the length of the horizontal and vertical feedline as well as the offset position of the feedline. The experimented data for the VSWR and the radiation pattern of the antenna are also represented.

  • PDF

Quasi-Yagi Antenna for UHF RFID and GNSS Bands (UHF RFID 및 GNSS 대역용 준-야기 안테나)

  • Lee, Jong-Ig;Kim, Gun-Kyun;Yeo, Junho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.57-58
    • /
    • 2018
  • In this paper, we studied a design method for a quasi-Yagi antenna operating over a broad bandwidth covering the UHF RFID(902-928 MHz) and GNSS(1,164-1.605 MHz). The proposed antenna is composed of three elements(dipole, reflector, and director) and fed by a coplanar waveguide. To reduce its size, a balun is integrated inside the antenna, and the ends of both the dipole and reflector are bent. Broadband impedance matching was obtained by placing the director near to the dipole and loading a chip capacitor inside the antenna. The antenna, designed through simulations, was fabricated on an FR4 substrate with 0.8 mm thickness. The experiment results for the antenna characteristics agree very well with the simulation.

  • PDF