• Title/Summary/Keyword: Antenna Reflector

Search Result 223, Processing Time 0.021 seconds

Design of the Pattern Adjustable Base Station Antenna for WCDMA Applications

  • Lee, Sang-Ho;Lee, Jung-Nam;Lee, Don-Shin;Park, Jong-Kweon;Kim, Hak-Sun
    • Journal of electromagnetic engineering and science
    • /
    • v.8 no.2
    • /
    • pp.64-69
    • /
    • 2008
  • In this paper, we have proposed the pattern adjustable base station antenna for WCDMA applications. The proposed antenna consists of an omni-antenna(sleeve monopole) and two movable reflectors. The two reflectors can be controlled by mechanically and used to adjust the horizontal pattern of the base station antenna. The antenna was designed, fabricated, and measured. The antenna covers the entire WCDMA band for VSWR<1.4. The measured antenna gain is more than 15 dBi over the operating frequency range. By changing the angle (a) and the distance (d) of the antenna, the pattern adjustment of the proposed base station antenna is found to be possible.

Multi-band directional antenna for satellite communications (위성 통신용 다대역 안테나)

  • Cheong, Chi-Hyun;Jeong, Hye-Mi;Kim, Kun-Woo;Bae, Ki-Hyoung;Tae, Hyun-Sik;Evtyushkin, Gennadiy
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.12
    • /
    • pp.1223-1231
    • /
    • 2010
  • The design is presented for a SATCOM antenna capable of simultaneous multi-band (X/Ku/Ka-Band) communications without replacement of feed horns or change of other parts in the application as a ground satellite terminal for large data transfer. The antenna is the offset configuration and consists of a dual-band(X/Ka-band) feed horn, a single-band(Ku-band) feed horn, a frequency selective surface(FSS) sub-reflector and a parabolic main-reflector. The antenna has a main reflector defining a prime focus and a frequency selective surface sub-reflector defining an image focus. A dual-band feed and a single-band feed are provided at each of the prime focus and image focus. The antenna is designed using 3D EM simulator and the gains measured in X/Ku/Ka-band of the complete antenna assembly is more than 31.6dBi, 36.8dBi, 40.8dBi, and the cross polarization is 21.7dB, 26.6dB, 25.2dB, respectively.

Design of SPA Antenna Using FET Switch for 2.6 GHz (FET 스위치를 이용한 2.6 GHz 용 SPA 안테나 설계)

  • Kang, Hyun-Sang;Park, Young-Il;Yong, Hwan-Gu;Kim, Byung-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.10
    • /
    • pp.1137-1144
    • /
    • 2012
  • In this paper, a 2.6 GHz switched parasitic array(SPA) antenna is designed to resolve the device interference in the femtocell. The designed SPA antenna structure consists of a central ${\lambda}/4$ monopole antenna as a radiator and surrounding four parasitic elements operating as a reflector or a director depending on the switching state. In addition, open state monopoles around the parasitic elements are placed to improve the directivity. The designed antenna utilizes RF FETs as switching elements instead of conventional PIN diodes, which enables beam steering with a simple structure consuming low power. To select the proper FET switch, the performance of the SPA antenna depending on the switch characteristics is analyzed. The fabricated antenna has 65 mm radius and 35 mm height, which shows about 15 dB front-back-ratio(FBR) at 2.6 GHz and enables eight-directional beam steering.

Sensitivity Analysis of the CBS Ku-Band Antenna due to Manufacturing/Alignment Errors (CBS Ku대역 안테나의 제작/정렬 오차 민감도 해석)

  • 한재흥;윤소현;엄만석;박종흥;이성팔
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.2
    • /
    • pp.168-177
    • /
    • 2003
  • The performance sensitivity analysis due to manufacturing/alignment errors is performed for the Ku-band offset parabola antenna of the domestic Communications and Broadcasting Satellite. The performance variations due to reflector random surface error, which inevitably happens during reflector manufacturing, are statistically analyzed using RMS error and correlation interval. The impact on the antenna performance of the fred hem's position and angular errors is investigated, and the sensitive directions are identified. When the target tolerances are applied, the performance degradations are found to be within the loss budget or corresponding performance margins.

Circular-Polarized Dipole Antenna with Reflector (반사판 부착 원편파 다이폴 안테나)

  • 한성민;이호선;우종명
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.7
    • /
    • pp.1139-1146
    • /
    • 2000
  • In this paper, circular-polarized dipole antenna with a novel structure is designed, simulated and fabricated for PCS or IMT-2000 base station at an arbitrary test frequency(1.575 GHz). Its radiation pattern is analyzed by means of physical optics(PO). The designed antenna is made up of a horizontal and a vertical dipole elements at a height of λ/4 above an reflector. One of λ/4 length vertical dipole element is located at a height of λ/8 above an reflector. In this case, circularly polarized radiation pattern is obtained by making impedance difference due to adjusting the length of each element. The characteristic of antenna measured from this study is that return loss is 18.4 dB, -10 dB bandwidth is 360 MHz(22.8%), 2 dB axial ratio bandwidth is 30 MHz, -3 dB beamwidth is 76$^{\circ}$, 2 dB axial ratio beamwidth is 58$^{\circ}$, axial ratio is 1.7 dB at 1.575 GHz. Radiation pattern is in well agreement with the result of PO.

  • PDF

Analysis and Experiment on Dynamic Characteristics for Deployable Composite Reflector Antenna (전개형 복합재료 반사판 안테나의 동특성 분석 및 시험)

  • Chae, Seungho;Roh, Jin-Ho;Lee, Soo-Yong;Jung, Hwa-Young;Lee, Jae-Eun;Park, Sung-Woo
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.5
    • /
    • pp.94-101
    • /
    • 2019
  • The dynamic characteristics of the composite reflector panels are numerically and experimentally investigated. A dynamics model of the panel is analytically developed based on a deployment mechanism of the antenna. The deployment is passively activated using elastic energy of a spring with two rotational degrees of freedom. Using the flexible multi-body dynamic analysis ADAMS, dynamic behavior of the panels such as velocities, deformations, as well as reaction forces during the deployment, are investigated in the gravity and zero-gravity cases. The reflector panel is manufactured using carbon fiber reinforced plastics (CFRPs) and its deployment characteristics are experimentally observed using a zero-gravity deployment test. The impact response and vibration problems that occur during deployment of the antenna panel have been identified and reliably deployed using dampers.

Ka-Band Antenna Design Using the Reflector Shaping for the Communications & Broadcasting Satellite (반사판 표면성형기법을 적용한 통신방송위성 Ka대역 안테나의 설계)

  • Han, Jae-Hung;Yun, So-Hyeun;Park, Jong-Heung;Lee, Seong-Pal
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.4
    • /
    • pp.88-94
    • /
    • 2004
  • The electrical design of the Ka-band antenna for the domestic Communications and Broadcasting Satellite (CBS) is described. The antenna has the offset Gregorian structure and is installed on the Earth-facing panel of the satellite. The electrical performance specifications for the antenna were determined from the required EIRP and G/T through the payload level performance analysis. This paper utilized the reflector shaping technology for the trade-off among the major performance parameters, resulting in compliance of all the parameters. The designed antenna shows 37.95 dBi EOC (End of Coverage) gain and 28.7 dB sidelobe isolation for transmit band, and 37.49 dBi EOC gain and 31.1 dB sidelobe isolation for receive band, The electrical performances of the antenna have been verified via the electrical testing of a manufactured EQM (Engineering Qualification Model) antenna.

Design of IBBD Array Antennas for WiBro/WiMAX Band (WiBro/WiMAX 대역 IBBD 배열 안테나의 설계)

  • Choi, Hwan-Gi;Choi, Hak-Keun;Jung, Young-Bae;Jeon, Soon-Ik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.1
    • /
    • pp.33-39
    • /
    • 2008
  • In this paper, a broadband rectangular reflector antenna with 16-array elements for WiBro/WiMAX band(2.3${\sim}$3.5 GHz) is designed, and its radiation characteristics are investigated. The designed antenna is composed of the IBBD(Integrated Balun Bow-tie Dipole) elements and has the feed circuit at the rear of the reflector to reduce the unwanted electromagnetic wave from it. To confirm the broadband characteristics of the designed antenna, test antenna is fabricated and its radiation characteristics are measured, compared with calculated results. The measured results show good agreement with the calculated results. As a result of measurements, 1.8GHz of bandwidth(VSWR<1.6) is achieved at $2.06{\sim}3.89GHz$ and the antenna gain over 10.3 dBi. We confirm that the designed antenna can be used as a broadband antenna for WiBro/WiMAX.

Design of W-Band Cassegrain Antenna for Beam Steering (빔 조향을 위한 W-대역 카세그레인 안테나 설계)

  • Park, Myung-Hoon;Han, Jun-Yong;Lee, Taek-Kyung;Lee, Jae-Wook;Oh, Gyung-Hyun;Song, Sung-Chan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.4
    • /
    • pp.358-368
    • /
    • 2016
  • In this paper, for the mechanical beam steering of the Cassegrain antenna, the steering performances of the main reflector tilting method are characterized, and the Cassegrain antenna for the antenna rotating method is designed and its performances are measured. In the Cassegrain antenna operating at W-band, the changes of characteristics due to changes in the sizes of the main/sub-reflectors and other structural changes are analyzed to obtain the structural variables satisfying the performance goal. The manufactured antenna in W-band shows the measured gain of 42.08 dBi, 3 dB beamwidth of $1.32^{\circ}$, $1.14^{\circ}$ and the return loss($S_{11}$) of -23.58 dB at the center frequency of 94 GHz.