• Title/Summary/Keyword: Antenna Measurements

Search Result 252, Processing Time 0.021 seconds

Analysis of a Circular Microstrip Patch Antenna with Dielectric Superstrate using the Rigorous Probe Feed Model (정확한 급전 구조를 고려한 레이돔 원형 패치 안테나 해석)

  • 최동혁;박경빈;박성욱
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.6
    • /
    • pp.859-867
    • /
    • 2000
  • In order to analyze the effect of a cover layer or radome for an antenna, the moment method is applied to the analysis of the circular microstrip patch antenna with dielectric superstrate fed by coaxial probe. The probe feed is modeled as a attachment mode method which can solve more exact analysis. In case of a ideal probe feed modeling, the probe self-impedance as well as the rapidly-varying patch current at the vicinity of the feed point was neglected. But a rigorous probe feed model which overcomes these deficiencies are developed, and used in the analysis of isolated circular patches. Measurements were performed to validate the numerical results. These are good agreement with each other.

  • PDF

Developments of Low Frequency Electric Field Sensor using $Ti:LiMbO_3$ Optical Modulator ($Ti:LiMbO_3$ 광변조기를 이용한 저주파 전계센서의 개발)

  • Choi, Young-Kyu
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.214-221
    • /
    • 2001
  • The use of an asymmetric Mach-Zehnder interferometric amplitude modulator to measure a relatively low frequency electric field strength is described. The sensitivity of an electric field sensor using a $Ti:LiMbO_3$ optical modulator is strongly affected by the shape of a electrode(probe antenna). To measure the low frequency electric field, a probe antenna of wide effective area is more useful than the usual dipole antenna. As a proof of this, the optical modulator was fabricated with a plate-type probe antenna and the usefulness of this antenna tested for measuring low frequency electric field strength. Measurements were performed in the range 0.1 V/cm to 60 V/cm at 60Hz through 100 kHz. Using a probe antenna of $10\;mm{\times}10\;mm$, the output voltage of $10^{-2}\;mV$ was measured with respect to the electric field strength of 0.1 V/cm at 60 Hz. By increasing the effective area of the probe antenna, better sensitivity is obtainable over the measured range.

  • PDF

A Novel Multiple Band Antenna Design Implementing Unbalanced Feed-Lines and Meandered Patch Options (비대칭 급전선로와 패치설계를 이용한 다중대역 안테나의 설계)

  • Jung, Jin-Woo;Roh, Hyoung-Hwan;Park, Jun-Seok;Cho, Hong-Goo
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.427-431
    • /
    • 2007
  • Applications in present-day mobile communication systems particularly require miniaturized dimensions and low-profiles of antenna in order to meet the mobile units. Thus, size reductions and bandwidth enhancements are becoming crucial design considerations for practical applications of microstrip antennas. The motivation of further experiments have been stepped to follow those studies for achieving compact and broadband, even multiplied operation modes, which are greatly increased with much attentions recently. To obtain broadband, single-feed, circularly polarized characteristics of microstrip antennas, a design with feed-line ought to be a factor of two. Usually, diagonally balanced-line feeds with hybrid coupler are employed to attain circular polarizations. We firstly formulated DGS (Defected Ground Structures) based operation principles of the entire microstrip components and therefore were able to derive impedance variance of feed-lines. After verifying corresponding experimental results, we targeted the frequency bands of UHF RFID (Ultra High Frequency Radio Frequency IDentification) and approximately of 0.4-2.4GHz have exhibited remarkable two resonance amplitudes as a dual band antenna. Our secondary researches were aimed to design quad band microstrip antenna which represents four resonance characteristics within the identical frequency bands as well. Microstrip patch has been meandered to lengthen the electrical paths, and the other design criteria with respecting physical parameters including radiation patterns and impedance bandwidths measurements will be described for verification. Advisable applications of these antennas can be GSM850, GSM900, GPS (L1-1575 and L2-1227) and UMTS-2110 of cellular systems, which extremely desire multiband and minimum size.

  • PDF

Delamination Detection of FRP Sheet Reinforced Concrete Using Microstrip Patch Antenna (Microstrip Patch Antenna를 이용한 탄소섬유시트 보강콘크리트의 박리 탐사)

  • Rhim, Hong-Chul;Lee, Hyo-Seok;Woo, Sang-Kyun;Song, Young-Chul
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.2
    • /
    • pp.134-141
    • /
    • 2007
  • A series of experimental work has been conducted to evaluate the capability of microstrip patch antenna system in detecting delamination in fiber reinforced Plastic (FRP) sheet reinforced concrete. For that purpose, a prototype microstrip patch antenna was developed with 15 GHz center frequency and 1 GHz bandwidth. For the comparison, a horn antenna with 15 GHz center frequency and 10 GHz bandwidth was used for the measurements of the same specimens. The laboratory sire specimens have the dimensions of 600 mm (length) $\times$ 600 mm (width) $\times$ 50mm (thickness) with a series of delaminations of 300 mm (length) $\times$ 300mm (width) $\times$ 5, 10, 15 mm (thickness). FRP of 1.5 mm thickness and epoxy of 3 mm thickness were placed on the top of artificially created delamination to represent actual FRP reinforced concrete condition. In all cases, the delamination has deen successfully identified. Also, it was shown that imaging results in microstrip patch antenna were improved by signal processing.

A Study on RCS(Radar Cross Section) Performance with Antenna Transmit Signal on/off in the X-band Incident Wave Environment (X-band 입사파 환경에서 안테나 송신 신호 on/off에 대한 RCS(Radar Cross Section) 성능에 관한 연구)

  • Jung, Euntae;Park, Jinwoo;Yu, Byunggil;Kim, Youngdam;Kim, Kichul;Seo, Jongwoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.59-65
    • /
    • 2020
  • Many technologies are being studied to reduce the RCS(Radar Cross Section) of stealth aircraft. Most RCS-reduction technlogies correspond to platforms. It is important to identify factors that RCS performance through simulation analysis of aircraft Mounted equipment. In particular, there are no studies of RCS performance in the radar frequency band when antenna transmit signals are applied. In this paper, the RCS performance variation on the transmit signal on/off of antennas mounted on a stealth aircraft was verified. Antennas were selected for each frequency band and simulated analysis to the RCS performance changes during antenna transmitting signal. Finally, to verify the characteristics of the change in RCS performance, RCS test measurements on the low-profile antenna transmit signal on/off were performed. In addintion, antenna RCS test measurement was performed according to the change of transmit signal power output. As a result, it was confirmed that there is no change in RCS performance when an antenna transmit signal is applied.

Design of a Conical Spiral Antenna for Satellite TT&C Applications (위성 TT&C용 원뿔 나선 안테나 설계)

  • Ko Han-Woong;Lee Junwen;Yu Jae-Deok;Kim Se-Yon;Ahn Bierng-Chearl;Park Dong-Hee
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.1 s.104
    • /
    • pp.24-38
    • /
    • 2006
  • In this paper, we investigate the design and fabrication of a conical spiral antenna suitable for satellite TT&C applications. The shape of the spiral is optimized using a commercial electromagnetic software for good gain and axial ratio performances over $2.0{\sim}2.3\;GHz$ frequencies. A coaxial infinite balun feeding the spiral is designed using experimental methods. A method for precision fabrication of the spiral is presented. Measurements of the fabricated antenna show satisfactory performances over $2.0{\sim}2.3\;GHz$ such as a reflection coefficient less than -18 dB, a maximum gain greater than 4 dB, a gain greater than 0 dB over angles ${\pm}75^{\circ}$ from the antenna boresight, an axial ratio less than 5 dB over angles ${\pm}90^{\circ}$ from the antenna boresight, a front-back ratio greater than 15 dB.

Developments of Extremely Low Frequency Electric Field Sensor using Guided-wave Optical Modulator (광도파로형 초저주파(ELF) 전계계측 센서의 개발)

  • Choe, Yeong-Gyu;Kim, Mun-Hwan
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.6
    • /
    • pp.1-7
    • /
    • 2002
  • The use of an asymmetric Mach-Zehnder interferometric amplitude modulator to measure a relatively low frequency electric field strength is described. The sensitivity of an electric field sensor using a Ti:LiNbO$_3$ optical modulator is strongly affected by the shape of a electrode(probe antenna). To measure the low frequency electric field, a probe antenna of wide effective area is more useful than the usual dipole antenna. As a proof of this, the optical modulator was fabricated with a plate-type probe antenna and the usefulness of this antenna tested for measuring low frequency electric field strength. Measurements were performed in the range 0.1V/cm to 60V/cm at 60Hz through 100KHz. Using a probe antenna of 10mm$\times$10mm, the output voltage of 10㎷ was measured with respect to the electric field strength of 0.1V/cm at 60Hz. By increasing the effective area of the probe antenna, better sensitivity is obtainable over the measured range.

Antenna Test Range for Telecommunication Satellite (통신위성용 안테나 테스트 레인지)

  • Lim, Seong-Bin;Kim, Tae-Youn;Choi, Seok-Won;Sim, Eun-Sup
    • Aerospace Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.52-59
    • /
    • 2007
  • Telecommunication satellite consists of a bus system and an RF payload system with high efficiency and high gain reflector antennas. Antenna measurement and also RF system performance (antenna under test, payload and satellite level) have to be evaluated enough before launching in the far-field range or equivalent test range. Basically far-field range is required in a range from two hundred meters to several kilo meters, and it is highly constrained to the externa1 environment, like the RF and the whether environment So the compact antenna test range is developed and used efficiently without external environments as in-door facility. This paper describes the configuration of the compact antenna test range, the range error, and the physical concept of the plane wave illumination Also, it provides a overall design of the anechoic chamber and range parameter values to accommodate the precision measurements in antenna test range.

  • PDF

Ultra High-Gain Displaced-Axis Metal Reflectarray Antenna for Millimeter-Wave Region (밀리미터파 대역의 초고이득 축이동 금속배열안테나)

  • Yi, Minwoo;Yang, Jongwon;Lee, Woosang;Jang, Won;So, Joonho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.4
    • /
    • pp.342-349
    • /
    • 2016
  • We design a displaced-axis Gregorian dual antenna in the form of a metal reflectarray antenna for millimeter wave region, W-band. Unlike a reflectarray composed of printed patch antennas on a dielectric substrate, metallic rectangular waveguide unit-cells are proposed to avoid the loss of substrate and take an advantage of ease of typical metal machining fabrication. In this paper, the radiation characteristics of constructed metal reflectarray antennas show ultra high-gain antenna over 50 dBi at a target frequency in W-band. The experimental measurements are conducted in millimeter-wave compact range antenna measurement system.

Improvement of Success Rate on LEO Satellite Attitude Determination Using GPS Carrier Phase Measurements (GPS를 이용한 저궤도 위성 자세 결정의 미지정수 결정 성공확률 향상)

  • Lee, Eun-Sung;Chun, Se-Bum;Lee, Young-Jea;Kang, Tea-Sam;Jee, Gyu-In;Jun, Hyang-Sig;Joo, Jung-Min
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.6
    • /
    • pp.45-50
    • /
    • 2005
  • To determine precise position GPS carrier phase measurements are used. In addition, the multi-antenna system consisting of 2 or more GPS antennas can make attitude determination effectively. When GPS carrier phase measurements are used the integer ambiguity must be fixed. The success rate is used to validate the integer ambiguity. For LEO satellite attitude determination the double difference carrier phase measurements are used, the success rate is calculated using the covariance matrix and the measurement matrix. The constraint that LEO satellite position vector and attitude vector is orthogonal is suggested for improving the success rate. The LEO satellite orbit model is KITSAT3. The results of the simulation are shown and analyzed.