• Title/Summary/Keyword: Antenna Measurement

Search Result 749, Processing Time 0.027 seconds

Design of a Planar Log-Spiral Antenna for Testing Plane-Wave Shielding Effectiveness (평면파 차폐효과 시험용 평판형 로그 스파이럴 안테나 설계)

  • Chung, Yeon-Choon
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.762-767
    • /
    • 2019
  • The plane-wave shielding effectiveness is typically measured for horizontal and vertical polarizations using a linearly polarized antenna. However, this typical measurement method results in big evaluation fees due to very long measurement time as well as huge idle space for maintenance, these problems is more severe especially in large shielded enclosures such as EMP protection facilities to be built in indoor buildings and underground. This paper describes the design and fabrication process and results of a planar log-spiral antenna applicable to the evaluation of the electromagnetic shielding effectiveness of a large EMP protection facility. Since the proposed antenna has a circular polarization, there is no need to separately measure the horizontal and vertical polarizations. Therefore, the measurement time can be shortened by more than 1/2, and further, its small volume with a planar structure can reduce greatly idle space required for the maintenance.

A Multi-Antenna Mobile Measurement System for DTV Coverage Measurement (DTV 커버리지 측정을 위한 다중 안테나 이동측정시스템)

  • Jeong, Young-Seok;Yang, Hae-Sool
    • Journal of Digital Convergence
    • /
    • v.11 no.11
    • /
    • pp.85-94
    • /
    • 2013
  • This paper presents a novel mobile measurement system with multi antennas which enable mobile measurement as well as fixed measurement with telescope mast. Proposed system installed 4 omni directional antennas for the space diversity process and one directional log periodic antenna for the simultaneous conventional fixed measurement. Whole antenna systems are connected to the custom DTV channel analyzers with Ethernet networks respectively and processed by the main controller to calculate real time average receive levels. To prove the performance of proposed system, the typical receive models are categorized as 3 area types - open area, building area and house area, and then intensive field tests were performed through mobile and fixed measurement phases. With these measurement data, the relationships between mobile and fixed measurement are analyzed, and the concept of compensation factor is proposed to assume the average receive level of signal. The field test is fulfilled as a co-work with public broadcasters and the proposed system is applied to the intensive coverage measurement projects for metropolitan areas by the korean government agencies.

Development of an automobile antenna printed on-glass for FM radio reception (차량용 FM 라디오 수신을 위한 '유리창에 프린트된 안테나'의 개발)

  • 심재륜;이준호;이성신;김효태
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.5
    • /
    • pp.18-23
    • /
    • 1998
  • Development of an automobile antenna printed on-glass for FM radio receptions was discussed in this study. NEC-2 code was used as the design tool in this research. An omnidirectional radiation pattern and reception power level of the newly designed antenna were compared with those of the conventional pole antenna for the evaluation of its performance. The test sites for the reception power level measurement were chosen by their signal enbironmental condition, such as multipath fading, and strong field effect area.

  • PDF

Design of a Short/Open-Ended Slot Antenna with Capacitive Coupling Feed Strips for Hepta-Band Mobile Application

  • Keum, Kyoseung;Piao, Haiyan;Choi, Jaehoon
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.1
    • /
    • pp.46-51
    • /
    • 2018
  • In this paper, a planar printed hybrid short/open-ended slot antenna with capacitive coupling feed strips is proposed for hepta-band mobile applications. The proposed antenna is comprised of a slotted ground plane on the top plane and two capacitive coupling feed strips with a chip inductor on the bottom plane. At the low frequency band, the short-ended long slot fed by strip 1 generates its half-wavelength resonance mode, whereas the T-shaped open ended slot fed by strip 2 generates its quarter-wavelength resonance mode for the high frequency band. The antenna provides a wide bandwidth covering GSM850/GSM900/DCS/PCS/UMTS/LTE2300/LTE2500 operation bands. Moreover, the antenna occupies a small volume of $15mm{\times}50mm{\times}1mm$. The operating principle of the proposed antenna and the simulation/measurement results are presented and discussed.

Test of a UAV Tracking Antenna System Using GPS (GPS를 이용한 무인항공기 추적안테나 시스템 시험)

  • Roh, Min-Shik;Lee, Dae-Woo;Cho, Kyeum-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.2
    • /
    • pp.171-176
    • /
    • 2007
  • The tracking antenna must always point to track moving vehicle for data link. In this paper, we determine pointing angle from the geometric relationship of antenna and UAV(Unmaned Aerial Vehicle) to let an antenna be toward a moving vehicle. The pointing angle of antenna is set through GPS measurement data installed in antenna and UAV. We verify the performance of this system from the fixing a camcoder on the antenna.

Assessment and Analysis of Human EMF Exposure to UHF RFID System (UHF 대역 RFID 시스템에서 전자기장의 인체노출량 측정 및 분석)

  • Byun, Jin-Kyu;Yun, Jae-Hun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.1
    • /
    • pp.132-140
    • /
    • 2009
  • For human exposure assessment of UHF RFID system, electric field distribution of commercial 900[MHz] RFID antenna was measured and analyzed. Also, SAR(Specific Absorption Rate) of RFID antenna was calculated by simulation, and compared with basic restrictions in EMF guidelines. For EMF exposure assessment according to EN and IEC standards, the reader was tested for the normal operation, and electric field from RFID antenna was measured at various distances and angles. For electric field measurement, narrow band isotropic electric field probe was used, and the measurements were made at 0.3, 0.5, 1.0 and 1.5[m] for every 15[$^{\circ}$] angle from the antenna. Also, the rationale for measurement distance in EN and IEC standards is analyzed from the measurement results.

Investigation of Influences of UWB Antennas on Impulse Radio Channel (임펄스 전파 채널에서의 초광대역 안테나 영향 연구)

  • Park Young-Jin;Song Jong-Hwa;Kim Kwan-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.12
    • /
    • pp.165-170
    • /
    • 2005
  • In this paper, influences of a ultra wideband (UWB) antenna on impulse channel measurement are investigated in time domain (TD) and frequency domain (FD) as well. Firstly, impulse response of an UWB antenna is obtained and then using the result of impulse response of the UWB antenna, influences of the antenna on impulse radio channel is analyzed. Furthermore, using the impulse response of the UWB anenna, method of impulse radio channel analysis is presented by excluding the effect of the antenna from an impulse radio channel. For verifying the theory, a modified conical monopole antenna is designed for measuring impulse radio channel and its impulse response is obtained. After that, in order to investigate the effects of the UWB antenna on an impulse radio channel, multipath environments are set up in an anechonic chamber and transmission coefficient for each multipath environment is measured with an aid of vector network analyzer. Data measured in frequency domain is transformed into those in time domain by way of signal processing. Measurement shows that such properties of the antenna as dispersion and ringing affect impulse radio channel. Moreover, using the impulse response of the antenna, impulse response of only multipath channel is obtained.

The Effect of Antenna Pattern Measurement According to Radio Wave Environment on Data Quality of HF Ocean Radar (전파환경에 따른 안테나패턴 측정(APM) 결과가 고주파 해양레이더의 자료 품질에 미치는 영향)

  • Jae Yeob, Kim;Dawoon, Jung;Seok, Lee;Kyu-Min, Song
    • Ocean and Polar Research
    • /
    • v.44 no.4
    • /
    • pp.287-296
    • /
    • 2022
  • High-frequency (HF) radar measures sea surface currents from the radio waves transmitted and received by antenna on land. Since the data quality of HF radar measurements sensitively depend on the radio wave environment around antenna, Antenna Pattern Measurements (APM) plays an important role in evaluating the accuracy of measured surface currents. In this study, APM was performed by selecting the times when the background noise level around antenna was high and low, and radial data were generated by applying the ideal pattern and measured pattern. The measured antenna pattern for each case was verified with the current velocity data collected by drifters. The radial velocity to which the ideal pattern was applied was not affected by the background noise level around antenna. However, the radial velocity obtained with APM in the period of high background noise was significantly lower in quality than the radial velocity in a low noise environment. It is recomended that APM be carried out in consideration of the radio wave environment around antenna, and that the applied result be compared and verified with the current velocity measurements by drifters. If it is difficult to re-measure APM, we suggest using radial velocity in generating total vector with the ideal pattern through comparative verification, rather than poorly measured patterns, for better data quality.

A Study on Folded Monopole Antenna with Spiral Shape for Wireless DVI Dongle Applications (무선 DVI 동글장치를 위한 스파이럴 구조를 갖는 폴디드 모노폴 안테나에 관한 연구)

  • Lee, Jae-Choon;Lee, Yun-Min
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.1
    • /
    • pp.72-75
    • /
    • 2016
  • In this paper, we proposes a internal antenna for wireless DVI dongle device using the folded monopole structure. The proposed antenna uses a basic structure of spiral and monopole. The antenna optimized for parameters length, gap, width, and rectangle of folded monopole antenna using the spiral structure. To confirm the characteristics of the antenna parameters, HFSS from ANSYS Inc. was used for the analysis. We used an FR4 dielectric substrate with a dielectric constant of 4.4. The DVI dongle size of the proposed antenna is $50{\times}40{\times}1.6mm$, and the size of the antenna area is $10{\times}40mm$. There is a value of return loss less then -10dB in 2.4GHz and 5.8GHz, band and the maximum antenna gain is -4.13dBi. The utilization possibility of the wireless DVI Dongle antenna have a folded monopole with spiral shape could be confirmed according to compare and analyze the simulation and measurement data.

A High-Isolation MIMO Antenna with Dual-Port Structure for 5G Mobile Phones

  • Yang, Hyung-kyu;Lee, Won-Woo;Rhee, Byung-Ho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.4
    • /
    • pp.1458-1470
    • /
    • 2018
  • In this letter, a new dual-port Multiple-Input Multiple-Output (MIMO) antenna is introduced which has two independent signal feeding ports in a single antenna element to achieve smaller antenna volumes for the 5G mobile applications. The dual-port structure is implemented by adding a cross coupled semi-loop (CCSL) antenna as the secondary radiator to the ground short of inverted-F antenna (IFA). It is found that the port to port isolation is not deteriorated when an IFA and CCSL is combined to form a dual-port structure. The isolation property of the proposed antenna is compared with a polarization diversity based dual-port antenna proposed in the literature [9]. The operating frequency range is 3.3-4.0 GHz which is suitable for places where $4{\times}4$ MIMO systems are supposed to be deployed such as in China, EU, Korea and Japan at the band ${\times}$ (3.3 - 3.8GHz. The measured 6-dB impedance bandwidths of the proposed antennas are larger than 700 MHz with isolation between the feeding ports higher than 18 dB [1-2]. The simulation and measurement results show that the proposed antenna concept is a very promising alternative for 5G mobile applications.