• Title/Summary/Keyword: Antenna Feed

Search Result 470, Processing Time 0.027 seconds

Design of Active Antenna Diplexers Using UWB Planar Monopole Antennas (초광대역 평면형 모노폴 안테나를 이용한 능동 안테나 다이플렉서의 설계)

  • Kim, Joon-Il;Lee, Won-Taek;Chang, Jin-Woo;Jee, Yong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.9
    • /
    • pp.1098-1106
    • /
    • 2007
  • This paper presents active antenna diplexers implemented into an ultra-wideband CPW(Coplanar Waveguide) fed monopole antennas. The proposed active antenna diplexer is designed to direct interconnect the output port of a wideband antenna to the input port of two active(HEMT) devices, where the impedance matching conditions of the proposed active integrated antenna are optimized by adjusting CPW(Coplanar Waveguide) feed line to be the length of 1/20 $\lambda_0$(@5.8 GHz) in planar type wideband antenna. The measured bandwidth of the active integrated antenna shows the range from 2.0 GHz to 3.1 GHz and from 5.25 GHz to 5.9 GHz. The measured peak gains are 17.0 dB at 2.4 GHz and 15.0 dB at 5.5 GHz.

Design of a Dual-Band GPS Array Antenna (이중 대역 GPS 배열 안테나 설계)

  • Kim, Heeyoung;Byun, Gangil;Son, Seok Bo;Choo, Hosung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.7
    • /
    • pp.678-685
    • /
    • 2013
  • In this paper, we propose a design of dual-band patch antennas for Global Positioning System(GPS) applications, and the designed antenna is used as an individual element of GPS arrays. A low distortion and a high isolation of the array are achieved by adjusting rotating angles of each array element. The antenna consists of two radiating patches that operate in the GPS $L_1$ and $L_2$ bands, and the two ports feeding network with a hybrid chip coupler is adopted to achieve a broad circular polarization(CP) bandwidth. The rotating angles of each antenna element are varied with four directions(${\phi}=0^{\circ}$, ${\phi}=90^{\circ}$, ${\phi}=180^{\circ}$, ${\phi}=270^{\circ}$) in order to minimize the pattern distortion and maximize the isolation among array elements. The measurement shows bore-sight gains of 0.3 dBic($L_1$) and -1.0 dBic($L_2$) for the center element. Bore-sight gains of 1.6 dBic($L_1$) and 1.0 dBic($L_2$) are observed for the edge element. This results demonstrate that the proposed antenna is suitable for GPS array applications.

Design of Miniaturization Terminal Antenna for 2.4 GHz WiFi Band with MZR (MZR을 이용한 2.4 GHz WiFi 대역 소형 단말기 안테나 설계)

  • Lee, Young-Hun
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.14-21
    • /
    • 2019
  • In this paper, we implemented an on-board miniaturization antenna operating 2.4 GHz using MZR(Mu Zero Resonator). It is must be operating under the constraint that the size of the small terminal PCB should be $78{\times}38{\times}0.8mm^3$ and the size of the system should be $63{\times}38{\times}0.8mm^3$ and the size of the radiating part should be $15{\times}38{\times}0.8mm^3$. The feeding structure uses a CPW structure for stable feeding and a feeding point at the upper left of the system board. A magnetic field coupling structure is used for coupling the feeding part and the antenna. The resonance frequency of the MZR is determined by the series inductance and capacitance of the cell, so the gap between the cells, the length of the cell, the length of the interdigital capacitor, and the spacing between the radiation part and the ground plane are analyzed. The antenna was designed and fabricated using the results. The total size of the antenna including the feed structure is $20.8{\times}9.0{\times}0.8mm^3$, and the electrical length is $0.1664{\lambda}_0{\times}0.072{\lambda}_0{\times}0.0064{\lambda}_0$. The measurement result for 10 dB bandwidth, gain and directivity are 440 MHz(18.3%), 0.4405 dB, and 2.722 dB respectively. It is confirmed that the radiation pattern has omnidirectional characteristics and it can be applied to ultra small terminal antenna.

Design of Loop Type Inserting Slot Antenna to Apply Bluetooth/Zigbee/WiMax/WLAN(2.4~5.82 GHz) Band (Bluetooth/Zigbee/WiMAX/WLAN(2.4~5.82 GHz) 대역 응용을 위해 루프 형태를 삽입한 슬롯 안테나 설계)

  • Hong, Yoon-Gi;An, Sang-Chul;Jung, Hoon;Hong, Won-Gi;Jung, Cheon-Seok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.5
    • /
    • pp.435-443
    • /
    • 2009
  • In this paper, we propose a microstrip slot antenna that works in Bluetooth, Zigbee, WiMAX and WLAN frequency bands($2.4{\sim}5.825\;GHz$). To get the wide bandwidth from the microstrip antenna proposed, we insert a pair of parastic strips along the feed line on the FR-4 dielectric substance(${\varepsilon}_r=4.8$). Furthermore, a simple geometrical rotation with quadrilateral slot is designed to maximize the bandwidth and to gain a wider frequency band than the conventional rectangular slot antenna. A additional design of the loop type is added to a cactus-shaped patched for 2.4 GHz ISM frequency band. The total measured bandwidth of the antenna is from 2.4 GHz to 6 GHz and the maximum gains of the antenna are 3.82 dBi, 4.48 dBi, 6.41 dBi and 6.65 dBi at the frequencies of 2.4 GHz, 3.5 GHz, 5.25 GHz and 5.77 GHz.

Circular Dual Mode Horn Antenna(CDMHA) with Modified Aperture to Improve E/H-Plane Radiation Pattern Symmetry (E/H 평면 방사 패턴 대칭성 향상을 위해 개구면이 변형된 원형 이중 모드 혼 안테나)

  • Kim, Jae Sik;Yoon, Ji Hwan;Yoon, Young Joong;Lee, Woo-Sang;So, Joon-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.5
    • /
    • pp.502-507
    • /
    • 2013
  • In this paper, a circular dual mode horn with modified aperture is proposed to improve a E/H-plane radiation pattern symmetry of a conventional oversized circular dual mode horn. The proposed antenna consists of a feeding section, a mode generation section and a phase matching section which has aperture shape transition from circle to ellipse or rectangle to improve a E/H-plane radiation pattern symmetry. To compare the performances between the proposed antenna and the convenional circular dual mode horn, the conventional circular dual mode horn and the proposed circular dual mode horn with rectangular aperture are fabricated and researched at 15 GHz. The measured results show that the conventional circular dual mode horn has 3.394 dB difference while the proposed antenna has only 0.539 dB difference between E and H-plane radiation patterns within the -11 dB beamwidth($53^{\circ}$) which is required beamwidth of the feed horn for the maximum aperture efficiency where f/d ratio of reflector antenna is 1.

An Optimum Design of the Shaped Cassegrainian Antenna (수정 곡면 카세그레인 안테나의 최적 설계)

  • Ryu, Hwang;Kim, Ik-Sang
    • The Journal of Engineering Research
    • /
    • v.2 no.1
    • /
    • pp.113-123
    • /
    • 1997
  • The purpose of this paper is an optimum design of the shaped Cassegrainian antenna system for the base station. The process of the shaped Cassegrainian antenna design is as follows : 1) the aperture field distribution is determined so as to meet design specifications, 2) a proper design parameter is selected, 3) extracting of the dimension data for the main and sub-reflector antenna To do these, Hansen's distribution is chosen as the aperture field, and the far-field pattern from the aperture is predicted by the angular spectrum. Firstly, the aperture field distribution is designed to satisfy the specification for design frequency, it is confirmed if this distribution meet the specification for another frequency band. The main- and the sub-reflectors are synthesized so as for the given beamwaveguide feed pattern to be transformed into the prescribed aperture distribution. The designed system has circular aperture, left-right symmetry and no tilted structure. The continuous surface functions of reflectors are obtained by adopting the global interpolation technique to the discrete reflector profiles. Jacobi polynomial-sinusoidal is used as the basis function. A Ka-band Cassegrainian antenna operates over 17.7 – 20.2 GHz for down-link band and 27.5 – 30 GHz for up-link band is designed.

  • PDF

A triple band printed monopole antenna with a bent branch strips for WiFi / 5G (와이파이 및 5G용 굽은 가지 스트립을 가진 삼중대역 인쇄형 모노폴 안테나)

  • Min-Woo Kim;Dong-Gi Shin;Oh-Rim Ryu;Young-Soon Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.6
    • /
    • pp.536-542
    • /
    • 2021
  • In this paper, we proposed a triple band printed monopole antenna with a bent branch strips for WiFi / 5G. An antenna structure in which bent strips for generating multiple resonance are attached in the form of branches was newly proposed based on a typical monopole strip vertically erected as a triple band antenna structure. The proposed antenna is designed on a FR-4 substrate with dielectric constant 4.3, thickness of 1.6 mm, and size of 28×40 mm2. The measured impedance bandwidth is 430 MHz (2.22~2.65 GHz) in the 2.4 GHz WLAN, 450 MHz (3.38~3.83 GHz) in the 3.5 GHz and 2390 MHz (4.95~7.34 GHz), In particular, it has been observed that antenna has a stable omnidirectional radiation patterns as well as gain of 1.537 dBi, 1.878 dBi and 2.337 dBi in the entire frequency band of interest.

16-port Feed Waveguide Array for DBS Reception System Mounted on Vehicle (차량 탑재형 DBS 수신 시스템용 16 포트 급전 도파관 어레이)

  • Min, Gyeong-Sik;Kim, Dong-Cheol
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.39 no.2
    • /
    • pp.92-100
    • /
    • 2002
  • The 16-port feed waveguide array with inductive walls analyzed by Galerkin's method of moments are proposed for the DBS reception system mounted on vehicle. First of all, in order to verify the validity of electromagnetic analysis and design for a $\pi$-junction feed waveguide, it is designed and fabricated at DBS band. The measurement results of a $\pi$-junction feed waveguide agree well with the theoretical ones. Based on this design method, an array design for WR-90 standard waveguide is conducted. Since the width of a $\pi$-junction feed WR-90 standard waveguide is larger than a guided wave length in an array design, the difference of amplitude and phase of 8-port array are calculated 2.3 dB and 62 degrees, respectively. The bandwidth with return loss of -20 dB below is about 220 MHz and it doesn't satisfy DBS band. To solve this problem, we propose a novel design that the width of a $\pi$-junction feed waveguide equals to a guided wave length. By the proposed novel design for 8-port feed waveguide array, the difference of amplitude and phase are decreased 1 dB and 13 degrees, respectively. The broad bandwidth of 700 MHz is also realized. The size of 16-port waveguide away compared with WR-90 array is reduced about 10 cm. The measured antenna gain for the fabricated 16-port feed waveguide array is observed 24 dBi above at DBS band.

A Study on the Integration of Zigzag Dipole Antennas and Improvement of Its Resonance Characteristics (지그재그 다이폴 안테나의 집적화와 공진 특성 개선에 관한 연구)

  • Jeon Hoo-Dong;Lee Young-Soon;Park Eui-Joon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.4 s.346
    • /
    • pp.44-51
    • /
    • 2006
  • In this paper, the resonance characteristics of zigzag wire dipole antennas are first analyzed by the method of moment(MOM) for shortening the space occupation length of straight wire dipole antenna Considering the shortening effect the integrated zigzag dipole antennas with the simplified microstrip feed are designed. Since the integration gives rise to discontinuities due to antenna line width with abrupt bend angles, the compensation by the chamfer is applied. Futhermore the integrated parasitic zigzag lines are properly attached to both sides of substrate for compensation of the effect of the dielectric substrate, hence improving the resonance characteristic. The design results at UHF and ISM band are verified with experiments.

이동통신 단말기용 안테나

  • 김종규
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.3
    • /
    • pp.2-11
    • /
    • 2001
  • The L-shaped strip is shown to be an attractive feed for the thick mierostrip antenna (thickness around 10% of the operating wavelength). The L-strip incorporated with the radiating patch introduces a capacitance suppressing some of the inductance introduced by the strip itself. In this paper, a wideband microstrip patch antenna fed by L-strip for the PCS ($1,750{\sim}1,850MHz$) and IMT-2000 ($1,920{\sim}2,170MHz$) broad-band is presented. A two-element array fed by L-strip is also proposed. Both the antennas have stable radiation patterns across the passband. The impedance bandwidth is over 31% (VSWR < 1.5, 615 MHz) of the center frequency. Moreover, both the antennas have about 7 dBi average gain.

  • PDF