• Title/Summary/Keyword: Antenna Feed

Search Result 470, Processing Time 0.02 seconds

Analysis of Radiation Characteristics of Microstrip Patch Antennas Integrated with Mushroom-like EBG Structures (Mushroom 형태의 EBG 구조가 집적된 마이크로스트립 패치 안테나의 방사 특성 해석)

  • Kim, Sang-Woo;Kim, Boo-Gyoun;Shin, Jong-Dug
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.4
    • /
    • pp.43-52
    • /
    • 2008
  • Radiation characteristics of microstrip patch antennas integrated with mushroom-like EBG structures in length direction, width direction and all directions are analyzed. Patch antennas integrated with EBG structures in length direction shows the best radiation characteristics among the cases integrated in three directions. The case for the feed point of a patch antenna located in the center of both EBG structures integrated with a patch antenna shows better symmetric E-plane radiation pattern, higher forward radiation intensity, and lower backward radiation intensity compared to the case for the center of a patch antenna located in the center of both EBG structures. The variation of the radiation characteristics of patch antennas integrated with EBG structures more than 4 periods versus number of periods of EBG structures integrated is very small.

Wide Bandwidth Circularly Polarized Aperture Coupled Microstrip Antenna using Cross-slot (십자 슬롯을 이용한 광대역 원형편파 적층 개구결합 마이크로스트립 안테나)

  • 양태식;이범선
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.5
    • /
    • pp.748-754
    • /
    • 2000
  • A novel single feed wide band CP stacked microstrip antenna using crossed slots has been designed, fabricated and measured. For the single rediating element the designed 10dB return loss bandwidth is 34.5%99.45~13.54 GHz), 3dB axial ratio bandwidth is 18.7%(11.17~13.39GHz), and 6 dB gain bandwidth is 29%(10.21~13.64GHz). For the 2$\times$2 array designed using a sequential rotation method, the 10dB return loss bandwidth is 35.9%(9.69~13.94GHz), 3dB axial ratio bandwidth is 34.6GHz (9.93~14.03GHz), and 6dB gain bandwidth is 27.4%(10.35~13.6GHz). For the fabricated 8$\times$8 array antenna, the 10dB return loss bandwidth is 27.3%(10.17~13.41GHz), 3dB axial ratio bandwidth is 27.9GHz(10.1~13.4GHz), and the radiation pattern is good agreement with theory. This antenna can be used for broadband applications for communications or broadcasting in Ku band.

  • PDF

Design of Wideband Planar Inverted-F Antenna Using Two-Layer Patches and Modified Ground Structure (이중층 패치와 부분 제거된 접지면을 이용한 광대역 평판형 역 F 안테나의 설계)

  • Lee, Kwang-Jae;Lee, Young-Hee;Kang, Yeon-Duk;Lee, Taek-Kyung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.9
    • /
    • pp.1015-1022
    • /
    • 2007
  • In this paper, we proposed a wideband design of planar inverted-F antenna(PIFA) using two-layer, patches and modified ground structure. The antenna consists of two layer patches with common feed and modified ground plane to control resonance frequency and antenna input impedance. The measured bandwidth is 1,492 MHz(BW: 67.7 %, 1,457${\sim}2,949$ MHz) for VSWR<2, and 1,170 MHz(BW: 21 %, 4,970${\sim}$6,140 MHz) for VSWR<2.5. It covers service bands of DCS1800, DCS1900, UMTS(WCDMA), WiBro, WLAN(IEEE 802.11b), satellite DMB. WLAN(IEEE 802.11a) in Korea and radiation patterns shows constant figure with frequency change.

MIMO Circular Polarization Feed Network for Communication Performance Improvement of Land Mobile Satellite System (육상 이동 위성 시스템의 통신 성능 향상을 위한 MIMO 원형 편파 급전 네트워크)

  • Han, Jung-Hoon;Myung, Noh-Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.4
    • /
    • pp.426-435
    • /
    • 2013
  • In this paper, we propose the MIMO circular polarization feed network to enhance the communication performances from the previous $2{\times}2$ MIMO channel to $4{\times}4$ channel for Land Mobile Satellite communication system. The only possibility to extend the communication channel is to use the additional satellite because of the limitation of satellite spaces to install additional antennas. For overcoming this problems, we propose the MIMO circular polarization feed network to secure the isolation characteristics without the distant antenna space. The port isolation characteristics and each port impedance matching conditions are numerically verified and we suggest the $4{\times}4$ MIMO channel model of the proposed system and the performances are verified. The fabricated circular polarization patch antennas with the proposed feed network are measured in the reverberation chamber and 7~10 dB of diversity gain and 80 % increasement of channel capacity are obtained.

Design of a circular polarized antenna for GNSS services of unmaned vehicle systems (무인 이동체용 GNSS 서비스를 위한 원형 편파 안테나 설계)

  • Kim, Jeong-Pyo;Lee, Min-Soo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.1
    • /
    • pp.111-116
    • /
    • 2017
  • We propose the compact circular polarized antenna. The radiation elements of the proposed antenna is designed using FR4 substrate with the size of $25mm{\times}3.2mm{\times}5mm$ and stand on four corners of the feed network substrate. The feeder network is designed on FR4 substrate with the size of $40mm{\times}40mm{\times}0.8mm$ and has four oupt signals with same magnitude and $90^{\circ}$ phase difference. The input impedances of the designed radiation elements and the output impedances of the feeder network are $100{\Omega}$. The designed antenna has the dimension of $40mm{\times}40mm{\times}5.8mm$ and the operated frequency band of 1.559 - 1.609 GHz. The fabricated antenna has RHCP radiation pattern and the measured results of axial ratio less than 3.5 dB and radiated gain more than 1.5 dBic. The fabricated antenna can apply to GLONASS and Beiodu systems as well as GPS system.

Design and Fabrication of 24 GHz 3-Beam Scan Antennas for ACC Applications (자동 주행 차량을 위한 24 GHz 3-Beam Scan 안테나의 설계 및 제작)

  • 원영진;이영주;공영균;김영수
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.1
    • /
    • pp.81-88
    • /
    • 2003
  • For driver's convenience, the ACC(Adaptive Cruise Control) requires a system which determines the direction of vehicles and controls the vehicle to keep the distance among the automobiles constant. This paper describes the microstrip array antennas designed to operate at 24 GHz, and used as a direction indicator of moving vehicles. 8${\times}$2 transmit array antenna with wide beamwidth, 8${\times}$4 receive center array antenna, and two 8${\times}$8 receive array antennas with narrow beamwidth were designed and fabricated. Measurement results for the arrays showed that the azimuthal beamwidth is 50$^{\circ}$and the gain is 16.7 dBi for the transmit array antenna. For the receive array antenna, the center, the left, and the right array antenna have beamwidths of 20$^{\circ}$, 13$^{\circ}$, 13$^{\circ}$respectively, and have gains of more than 20 dBi. The left and right array antenna have the beam tilt angle of ${\pm}$18$^{\circ}$. The measured radiation patterns showed a good agreement with the simulated patterns, and the designed array antennas are suitable fur detecting 3 directions of the vehicle within the scan angle area.

A Multi-Polarization Reconfigurable Microstrip Antenna Using PIN Diodes (PIN 다이오드를 이용한 다중 편파 재구성 마이크로스트립 안테나)

  • Song, Taeho;Lee, Youngki;Park, Daesung;Lee, Seokgon;Kim, Hyoungjoo;Choi, Jaehoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.5
    • /
    • pp.492-501
    • /
    • 2013
  • In this paper, a multi polarization reconfigurable microstrip antenna that can be used selectively for four polarizations(vertical polarization, horizontal polarization, right hand circular polarization, left hand circular polarization) at the S-band is presented. The proposed antenna consists of four PIN diodes and a microstrip patch with a cross slot and a circular slot and is fed by utiliting electromagnetic coupling between the microstrip patch and the feed line. The proposed antenna has a DC bias network to supply DC voltage to each PIN diode and the polarization can be determined by controlling the ON /OFF states of four PIN diodes. The fabricated antenna has a VSWR below 2 in the vertical polarization(3.17~3.21 GHz), the horizontal polarization(3.16~3.20 GHz), the left hand circular polarization (3.08~3.19 GHz), and the right hand circular polarization(3.10~3.2 GHz) frequency bands. The designed antenna has the cross polarization level higher than 20 dB, a gain over 5 dBi for the linear polarization states, and 3 dB axial ratio bandwidth wider than 50 MHz in the circular polarization states.

A study on the Enhancement of Gain and Axial Ratio Bandwidth of the Multilayer CP-DRA (다층 CP-DRA의 이득 및 축비대역폭 증대에 관한 연구)

  • Lee, Ho-Sang;Jo, Dong-Ki;Jung, Young-Ho;Kim, Cheol-Bok;Son, Ho-Cheol;Lee, Mun-Soo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.7
    • /
    • pp.52-60
    • /
    • 2009
  • In this pater, a CP-DRA(Circularly Polarized Dielectric Resonator Antenna) using cross-slot-feed is studied to enhance the gain and axial ratio bandwidth. First, a single layer CP-DRA is studied as a reference for comparison. Then a new type of multilayer CP-DRA is proposed to enhance the gain and axial ratio bandwidth. In consideration of the antenna gain enhancement, the spacing between the elements of the multilayer CP-DRA is examined through analysis of the radiation performance of a 2$\times$2 planar amy of DRAs with a spacing of 0.7$\lambda_0$ and 1.2$\lambda_0$ using CST Microwave Studio. The measured result shows that the gain and bandwidth of the multilayer structure is approximately twice that of the single layer one. In the case of the array antenna in which the spacing between multilayer CP-DRA element is 1.2$\lambda_0$, a grating lobe is reduced, in contrast to what we can expect from a conventional antenna array. The gain is 13.4dBi and axial ratio bandwidth is 0.8GHz.

Design of A Microstrip Linear Tapered Slot Antenna (마이크로스트립 선형 테이퍼형 슬롯 안테나 설계)

  • Jang, Jae-Sam;Kim, Cheol-Bok;Lee, Ho-Sang;Jung, Young-Ho;Jo, Dong-Ki;Lee, Mun-Soo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.5
    • /
    • pp.40-45
    • /
    • 2008
  • In this paper, a microstrip linear tapered slot antenna is designed. A tapered slot antenna(TSA) has many advantages such as low profile, low weight, easy fabrication, and compatibility with monolithic microwave integrated circuits(MMIC). In addition, it has demonstrated multi octave bandwidth, moderately high gain, and symmetrical E- and H-plane beam patterns. A feed network is implemented with transition between a microstrip and a slot line for the microstrip linear tapered slot antenna. The transition is consist of two sides. One side has a microstrip line, the other side has a slot line. The dimensions of the microstrip and slot line are ${\lambda}_m/4$ and ${\lambda}_s/4$ at the center of the cross section of the microstrip and slot line. In order to get broad bandwidth antenna characteristics, the tapered length is chosen as $4{\lambda}_o$ and termination width is chosen as $1.75{\lambda}_o$. Experimental results show that the microstrip tapered slot antenna has symmetrical E- and H-plane beam patterns with around 5GHz of bandwidth at center frequency of 5.0GHz.

On the Design of Multi-layered Polygonal Helix Antennas (다각 다단 구조 헬릭스 안테나 설계)

  • Choo Jae-Yul;Choo Ho-Sung;Park Ik-Mo;Oh Yi-Sok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.3 s.106
    • /
    • pp.249-258
    • /
    • 2006
  • In this letter, we propose a novel printed helix antenna for RFID reader in UHF band. The printed strip line of the antenna is first wound up outside a polygonal shaped layer and then the winding continues on an inner layer to control the overall gain and the radiation pattern. In addition, the winding pitch angles on each layer have either negative or positive values resulting in the broad CP bandwidth. The detail structure of the antenna was optimized using Pareto genetic algorithm(GA), so as to obtain excellent performances for RFID reader antennas. The optimized two-layered polygonal helix was fabricated on the cardboard of a flexible substrate and the performances were measured and compared with the simulations. The fabricated antenna was made up of copper tape which can adhere to a flexible cardboard and had 21.4 % matching bandwidth, 31.9 % CP bandwidth, readable range of $5.5m^2$ with kr=3.2. Also based on the current distribution of the strip line of the antenna and sensitivity of the antenna bents points, we confirmed that the antenna has the quarter-wave transformer near the feed for the broad matching bandwidth and radiates the traveling wave for the broad CP bandwidth using the bent strip line.