• Title/Summary/Keyword: Antenna Efficiency

Search Result 537, Processing Time 0.025 seconds

The cancellation performance of loop-back signal in wireless USN multihop relay node (무선 USN 멀티홉 중계 노드에서 루프백 신호의 제거 성능)

  • Lim, Seung-Gag;Kang, Dae-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.4
    • /
    • pp.17-24
    • /
    • 2009
  • This paper deals with the cancellation performance of loop back interference signal in the case of multihop relay of 16-QAM received signal at the USN radio network. For this, it is necessary to the exchange of information with long distance located station by means of the relay function between the node in the USN environment. In the relay node, the loop-back interference signal which the retransmitting signal is feedback to the receiver side due to the antenna of transmitter and receiver are co-used or very colsely located or using the nonlinear device. Due to this signal, the performance of USN system are degraded which are using the limited resource of frequency and power. For improve this, it is necessary to applying the adaptive signal processing algorithm in order to cancellating the unwanted loop-back interference signal at the frontend of receiver in relaying node, we can get the better system and multi hop performance. In the adaptive signal processing, we considered the 16-QAM signal which has a good spectral efficiency, firstly, than, the QR-Array RLS algorithm was used that has a fairly good convergence property and the solving the finite length problem in the H/W implementation. Finaly, we confirmed that the good elimination performanc was confirmed by computer simulation in the learing cuved and received signal constellation compared to the conventional RLS.

  • PDF

GNSS Software Receivers: Sampling and jitter considerations for multiple signals

  • Amin, Bilal;Dempster, Andrew G.
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.385-390
    • /
    • 2006
  • This paper examines the sampling and jitter specifications and considerations for Global Navigation Satellite Systems (GNSS) software receivers. Software radio (SWR) technologies are being used in the implementation of communication receivers in general and GNSS receivers in particular. With the advent of new GPS signals, and a range of new Galileo and GLONASS signals soon becoming available, GNSS is an application where SWR and software-defined radio (SDR) are likely to have an impact. The sampling process is critical for SWR receivers, where it occurs as close to the antenna as possible. One way to achieve this is by BandPass Sampling (BPS), which is an undersampling technique that exploits aliasing to perform downconversion. BPS enables removal of the IF stage in the radio receiver. The sampling frequency is a very important factor since it influences both receiver performance and implementation efficiency. However, the design of BPS can result in degradation of Signal-to-Noise Ratio (SNR) due to the out-of-band noise being aliased. Important to the specification of both the ADC and its clocking Phase- Locked Loop (PLL) is jitter. Contributing to the system jitter are the aperture jitter of the sample-and-hold switch at the input of ADC and the sampling-clock jitter. Aperture jitter effects have usually been modeled as additive noise, based on a sinusoidal input signal, and limits the achievable Signal-to-Noise Ratio (SNR). Jitter in the sampled signal has several sources: phase noise in the Voltage-Controlled Oscillator (VCO) within the sampling PLL, jitter introduced by variations in the period of the frequency divider used in the sampling PLL and cross-talk from the lock line running parallel to signal lines. Jitter in the sampling process directly acts to degrade the noise floor and selectivity of receiver. Choosing an appropriate VCO for a SWR system is not as simple as finding one with right oscillator frequency. Similarly, it is important to specify the right jitter performance for the ADC. In this paper, the allowable sampling frequencies are calculated and analyzed for the multiple frequency BPS software radio GNSS receivers. The SNR degradation due to jitter in a BPSK system is calculated and required jitter standard deviation allowable for each GNSS band of interest is evaluated. Furthermore, in this paper we have investigated the sources of jitter and a basic jitter budget is calculated that could assist in the design of multiple frequency SWR GNSS receivers. We examine different ADCs and PLLs available in the market and compare known performance with the calculated budget. The results obtained are therefore directly applicable to SWR GNSS receiver design.

  • PDF

Downlink Performance Analysis for Cell Range Expansion Bias in Heterogeneous Mobile Communication Networks (이종 이동통신 네트워크에서 셀 확장 편향치에 따른 하향 링크 성능 분석)

  • Ban, Tae-Won;Jung, Bang Chul;Jo, Jung-Yeon;Sung, Kil-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.12
    • /
    • pp.2806-2811
    • /
    • 2013
  • New technologies such as multi-antenna and small cell were proposed as key technology for the next generation mobile system to cope with the explosively increasing mobile data traffic. In particular, heterogeneous mobile communication network which can improve spatial reuse factor by exploiting macro and small cells simultaneously is attracting attention. However, the heterogeneous network has a problem that the utilization of small cells becomes low because the transmit power of macro base stations is much higher than that of small base stations and then the probability that mobile stations are attached to the macro base stations becomes high. This problem is dominant in uplink. The concept of cell range expansion bias to mitigate the problem was proposed by 3GPP and the corresponding standardization is in progress. In this paper, we analyze the downlink performance of the heterogeneous mobile communication network based on a system level simulator with the cell range expansion bias in terms of average cell spectral efficiency.

Different Heterogeneous IoT Data Management Techniques for IoT Cloud Environments (IoT 클라우드 환경을 위한 서로 다른 이기종의 IoT 데이터 관리 기법)

  • Cho, Sung-Nam;Jeong, Yoon-Su
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.12
    • /
    • pp.15-21
    • /
    • 2020
  • Although IoT systems are used in a variety of heterogeneous environments as cloud environments develop, all IoT devices are not provided with reliable protocols and services. This paper proposes an IoT data management technique that can extend the IoT cloud environment to an n-layer multi-level structure so that information collected from different heterogeneous IoT devices can be efficiently sorted and processed. The proposed technique aims to classify and process IoT information by transmitting routing information and weight information through wireless data link data collected from heterogeneous IoT devices. The proposed technique not only delivers information classified from IoT devices to the corresponding routing path but also improves the efficiency of IoT data processing by assigning priority according to weight information. The IoT devices used in the proposed technique use each other's reliable protocols, and queries for other IoT devices locally through a local cloud composed of hierarchical structures have features that ensure scalability because they maintain a certain cost.y channels of IoT information in order to make the most of the multiple antenna technology.

Freshwater Fish Utilization of Fishway Installed in the Jangheung Dam (장흥댐에 설치되어 있는 어도와 담수어류의 이용 분석)

  • Yoon, Ju-Duk;Kim, Jeong-Hui;Joo, Gea-Jae;Seo, Jin-Won;Pak, Hubert;Jang, Min-Ho
    • Korean Journal of Ecology and Environment
    • /
    • v.44 no.3
    • /
    • pp.264-271
    • /
    • 2011
  • At the Jangheung multipurpose dam, which is on the Tamjin River, a trapping and trucking operation was established to maintain continuous upstream migration of fish,. To facilitate fish gathering, installation of an effective fishing trap was required. In this study, we evaluated the fish trap, established at the Jangheung dam, using PIT (Passive Integrated Transponder) telemetry. A total of 254 individuals from 15 species were monitored. Among these tagged species, 36 individuals from 6 species (Carassius auratus, C. cuvieri, Zacco temminckii, Z. platypus, Pungtungia herzi, and Pseudobagrus koreanus) were detected; a 14.2% detection rate. C. auratus recorded the highest detection rate of 44.2% while P. herzi was 14.3%. Z. temminckii and Z. platypus showed relatively low detection, 5% and 7.7% respectively. Some of individuals from C. auratus and Z. platypus did not pass through the antenna at the first attempt but were continuously detected on multiple days. There were no statistical differences in body size (total length, standard length and body weight) of individuals that did or did not swim into the trap (Mann-Whitney U test, p>0.05). Fish mainly swam into the trap during outflow of water from the dam (Mann-Whitney U test, p<0.001) and showed a higher detection frequency in daytime than nighttime (Mann-Whitney U test, p<0.001). Thus, for fish movement into the trap, external factors such as outflow from dam and time of day have important roles. Based on detection rate, not all fishes showed upstream migration but represented selective migration. Consequently, the establishment of flexible outflow strategies that take into consideration ecological characteristics of fishes should required for improving the efficiency of fishway.

Effects of Feedback Signals on DTV Repeaters (DTV 중계기의 궤환신호의 영향)

  • Kang, Sang-Gee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.10
    • /
    • pp.1737-1743
    • /
    • 2006
  • OCR(On channel repeater) provides the high frequency reuse efficiency for allocating frequency bands to repeaters because the frequency of input and output signals of OCRs is the same. However the oscillation probability of OCRs is high due to the same input and output frequency. In order to prevent a repeater from oscillating, we must keep the antenna isolation higher than the gain of the repeater with a some margin. In this paper we simulated the effects of the amplitude, phase and time delay of feedback signals (m the characteristics of non-regeneration OCR. Simulation results show that the highest probability of oscillation is occurred when the gain of a repeater is the same value of the isolation. From the simulation results, we know that the phase of feedback signals can be adjusted to reduce the possibility of oscillation if a non-regeneration repeater has a narrow operation bandwidth or a signal bandwidth is narrow. As the time delay increases, the probability of oscillation and the fluctuation of gain over a certain frequency band increase also. The effects of the amplitude and phase of feedback signals on S/N of 8-VSB signal for generation and non-generation repeater were tested. The measured results show that the set-top can receive 8-VSB signal when the received signal power is $17{\sim}18dB$ higher than the noise power. When the isolation is almost same as the gain of the repeater, then the set-top can not receive 8-VSB signals due to the oscillation of the repeater. And the phase of feedback signals affects S/N at the output of the repeater when the isolation is $11.75{\sim}13.75dB$ larger than the gain of the repeater. In this case the set-top can not receive 8-VSB signal of at $48^{\circ}\;and\;347^{\circ}$ of the phase of feedback signals. However the phase of feedback signals can not affect the S/N of 8-VSB signals of the generation repeater because of the demodulation and modulation process of the generation repenter. The set-top can not receive 8-VSB signals when the amplitude of feedback signals is $12.6{\sim}13.6dB$ larger than the wanted signal power at the input port of the repeater. It's because that the amplitude of feedback signals saturates the front end of the repeater.

Channel Model and Wireless Link Performance Analysis for Short-Range Wireless Communication Applications in the Terahertz Frequency (테라헤르츠 대역 주파수에서 근거리 무선 통신 응용을 위한 채널 모델 및 무선 링크 성능 분석)

  • Chung, Tae-Jin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.9
    • /
    • pp.868-882
    • /
    • 2009
  • In this paper, channel model and wireless link performance analysis for the short-range wireless communication system applications in the terahertz frequency which is currently interested in many countries will be described. In order to realize high data rates above 10 Gbps, the more wide bandwidths will be required than the currently available bandwidths of millimeter-wave frequencies, therefore, the carrier frequencies will be pushed to THz range to obtain larger bandwidths. From the THz atmospheric propagation characteristics based on ITU-R P.676-7, the available bandwidths were calculated to be 68, 48 and 45 GHz at the center frequencies of 220, 300 and 350 GHz, respectively. With these larger bandwidths, it was shown from the simulation that higher data rate above 10 Gbps can be achieved using lower order modulation schemes which have spectral efficiency of below 1. The indoor propagation delay spread characteristics were analyzed using a simplified PDP model with respect to building materials. The RMS delay spread was calculated to be 9.23 ns in a room size of $6\;m(L){\times}5\;m(W){\times}2.5\;m(H)$ for the concrete plaster with TE polarization, which is a similar result of below 10 ns from the Ray-Tracing simulation in the reference paper. The indoor wireless link performance analysis results showed that receiver sensitivity was $-56{\sim}-46\;dBm$ over bandwidth of $5{\sim}50\;GHz$ and antenna gain was calculated to be $26.6{\sim}31.6\;dBi$ at link distance of 10m under the BPSK modulation scheme. The maximum achievable data rates were estimated to be 30, 16 and 12 Gbps at the carrier frequencies of 220, 300 and 350 GHz, respectively, under the A WGN and LOS conditions, where it was assumed that the output power of the transmitter is -15 dBm and link distance of 1 m with BER of $10^{-12}$. If the output power of transmitter is increased, the more higher data rate can be achieved than the above results.