• Title/Summary/Keyword: Antenna Characteristics

Search Result 1,430, Processing Time 0.025 seconds

A Design of Offset slotted Rectangular Microstrip Patch Antenna (Offset slotted 직사각형 마이크로스트립 패치안테나의 설계)

  • Park, Byoung-Woo;Shin, Hye-Jung;Gho, Kyung-Gu
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.2
    • /
    • pp.99-104
    • /
    • 2006
  • This paper proposed a method to design the offset slotted rectangular microstrip patch antenna which can be used for GPS antenna. The multi-port connection method and the desegmentation technique had been used to analyze !he characteristics of this antenna. To reduce a size of this antenna, a dielectric substrate with a high permittivity($\varepsilon_{\gamma}$=10.2) was used and a offset rectangular slot was inserted in the microstrip patch antenna. The dimension of a manufactured antenna is $20\times30\times1.27$[mm]. Accordingly this small antenna can be used directly GPS antenna or cellular phone.

  • PDF

Development of Wiper Antenna for Automobile using Single Sleeve Monopole (단일 슬리브 모노폴을 이용한 차량용 와이퍼 안테나의 개발)

  • 최광제
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.2
    • /
    • pp.210-215
    • /
    • 2001
  • The pole antenna of vehicles for AM/FM radio broadcasting receptions has many probems, such as damageable mechanical system and noise etc. It is considered that noise is composed of the structural vibration noise and the air flow induced aerodynamic noise. Also we find out that the setting process of a printed on-glass automobile antenna has many difficulties. Recently, the above mentioned problems can be reduced by employing enhanced wiper antenna which utilizes the windshied wiper arm. The new system is a passive antenna. In this study, experiments for the characteristics of a wiper antenna by measuring the SWR, radiation pattern and received powe have been carried out. The experimental results show that the efficiency of the wiper antenna has better performance than any other antenna.

  • PDF

A Triple-Band Printed Dipole Antenna using Parasitic Elements for Multiple Wireless Services

  • Chang, Ki-Hun;Kim, Hyung-Rak;Hwang, Kwang-Sun;Yoon, Ick-Jae;Yoon, Young-Joong
    • Journal of electromagnetic engineering and science
    • /
    • v.4 no.1
    • /
    • pp.8-12
    • /
    • 2004
  • In this paper, a triple-band printed dipole antenna using parasitic elements is proposed for the multiple wireless services. The proposed antenna is designed and experimentally analyzed at the bands of PCS, IMT-2000, and ISM services. To achieve triple frequency operation, the proposed antenna contains two parasitic elements, which act as additional resonators by coupling from the driving dipole antenna. From the measured results, the resonant frequencies of this antenna are 1.79 ㎓, 2.03 ㎓, and 2.41 ㎓ and the measured impedance bandwidths are 90 MHz(1760∼1850 MHz), 210 MHz(1,930∼2,130 MHz), and 30 MHz(2,400∼2,430 MHz) for VSWR<2. The measured antenna gains are 2.14 ㏈i, 0.9 ㏈i, and 0.5 ㏈i, respectively. Antenna parameters for trifle-band operation are investigated and several antenna characteristics are discussed.

Design of Composite Multilayer Surface Antenna Structure and Its Bending Fatigue Characteristics

  • Moon, Tae-Chul;Hwang, Woon-Bong
    • Advanced Composite Materials
    • /
    • v.17 no.3
    • /
    • pp.215-224
    • /
    • 2008
  • The present study aims to design a multilayer microstrip antenna with composite sandwich construction and investigate fatigue behavior of this multilayer SAS (surface antenna structure) that was asymmetric sandwich structure for the next generation of structural surface technology. This term, SAS, indicates that the structural surface becomes an antenna. Constituent materials were selected considering electrical properties, dielectric constant and tangent loss as well as mechanical properties. For the antenna performance, antenna elements inserted into structural layers were designed for satellite communication at a resonant frequency of 12.2 GHz. From electrical measurements, it was shown that antenna performances were in good agreement with design requirements. In cyclic 4-point bending, flexure behavior was investigated by static and fatigue test. Fatigue life curve of the SAS was obtained. The experimental results of bending fatigue were compared with single load level fatigue life prediction equations and in good agreement. The SAS concept is can be extended to give a useful guide for manufacturers of structural body panels as well as antenna designers.

The Multi-Aperture Transmit Horn Antenna for Radar Space Feeder (레이다 공간급전용 다중-개구 송신 혼 안테나)

  • 조용문;박동철
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.113-121
    • /
    • 2003
  • In this paper, the transmit antenna for the space feeder used for the phased array antennas is investigated. The multi-aperture horn antenna is proposed as the transmit antenna and the characteristics are verified with the Matlab coding, HFSS of Ansoft Corp., and MWS of CST Corp., The E-plane and H-plane beam patterns of the multi-aperture horn antenna are nearly symmetrical and the sidelobe level of the I-plane beam pattern is lower than that the of general pyramidal horn antenna. The fabricated multi-aperture horn antenna is measured using the near-field measurement system. The measured results show good agreement with the simulated ones.

Design Method of a Circularly-Polarized Antenna Using Fabry-Perot Cavity Structure

  • Ju, Jeong-Ho;Kim, Dong-Ho;Lee, Wang-Joo;Choi, Jae-Ick
    • ETRI Journal
    • /
    • v.33 no.2
    • /
    • pp.163-168
    • /
    • 2011
  • A Fabry-Perot cavity (FPC) antenna producing both high-gain and circularly-polarized (CP) behavior is proposed. To increase antenna gain and obtain CP characteristics, a superstrate composed of square patches with a pair of truncated corners is placed above the linearly polarized patch antenna with an approximately half-wavelength distance from the ground plane at the operating frequency. The proposed antenna has the advantages of high gain, a simple design, and an excellent boresight axial ratio over the operating frequency bandwidth. Moreover, used in an FPC antenna, the proposed superstrate converts a linear polarization produced by a patch antenna into a circular polarization. In addition, the cavity antenna produces left-hand circular-polarization and right-hand circular-polarization when a patch antenna inside the cavity generates x-direction and y-direction polarization, respectively. The measured and simulated results verify the performance of the antenna.

Design and Optimization of Four Element Triangular Dielectric Resonator Antenna using PSO Algorithm for Wireless Applications

  • Dasi swathi
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.10
    • /
    • pp.67-72
    • /
    • 2023
  • This paper portrays the design and optimization of a wideband four element triangular dielectric resonator antenna (TDRA) using PSO. The proposed antenna's radiation characteristics were extracted using Ansoft HFSS software. At a resonant frequency of 5-7 GHz, the four element antenna provides nearly 21 percent bandwidth and the optimized gives 5.82 dBi peak gain. The radiation patterns symmetry and uniformity are maintained throughout the operating bandwidth. for WLAN (IEEE 802.16) and WiMAX applications, the proposed antenna exhibits a consistent symmetric monopole type radiation pattern with low cross polarisation. The proposed antenna's performance was compared to that of other dielectric resonator antenna (DRA) shapes, and it was discovered that the TDRA uses a lot less radiation area to provide better performance than other DRA shapes and PSO optimized antenna increases the gain of the antenna

Wide Band Characteristics of the Microstrip circular and square Slot Patch Antenna (마이크로스트립 원형 및 사각형 급전 슬롯 패치 안테나의 광대역 특성)

  • 이용창;백경훈
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.05a
    • /
    • pp.223-227
    • /
    • 2001
  • To complement the narrow band characteristics of the microstrip patch antenna, the slot patch antenna was designed for the wide band characteristics. The microstrip slot patch antenna has wide band characteristics when the size of the slots and the feed line shapes are designed accordingly. In this study, various substrates as a epsilon-10, and a epoxy were used to design slot patch antennas. The feed line structure of the circular and square were also designed to have wide band. In the case of slot antennas with the circular patch shapes using epsilon-10 plate 50mm thickness with relative permittivity the 41% bandwidth on the 1.5∼2.28㎓ was shown. When an Epoxy plate 1.Sum thickness with relative permittivity 4.75 is used to construct a circular slot antenna with a square patch form, the frequency band width was obtained 77% as the 1.2∼2.7㎓ frequency range. These results are coincided well with the theoretical results.

  • PDF

Wide-Band T-Shaped Microstrip-Fed Twin-Slot Array Antenna

  • Jang, Yong-Woong
    • ETRI Journal
    • /
    • v.23 no.1
    • /
    • pp.33-38
    • /
    • 2001
  • A numerical simulation and an experimental implementation of T-shaped microstrip-fed printed slot array antenna are presented in this paper. The proposed antenna with relative permittivity 4.3 and thickness 1.0mm is analyzed by the finite-difference time-domain (FDTD) method. The dependence of design parameters on the bandwidth characteristics is investigated. The measured bandwidth of twin-slot array antenna is from 1.37 GHz to 2.388 GHz, which is approximately 53.9 % for return loss less than or equal to -10 dB. The bandwidth of twin-slot is about 1.06 % larger than that of single-slot antenna. The measured results are in good agreement with the FDTD results.

  • PDF

The Design of the Broadband Monopole antenna for PCS and IMT-2000 Dual band application (PCS 및 IMT-2000 이중대역용 광대역 모노폴 안테나 설계)

  • 문정익;박서욱
    • Proceedings of the IEEK Conference
    • /
    • 2000.06a
    • /
    • pp.173-176
    • /
    • 2000
  • In This paper, a novel broadband monopole antenna is investigated experimentally. Our broadband monopole antenna yields the largest bandwidth from 1.72 ∼ 2.2 GHz ( 24.2 % ) for VSWR<1.2 So, this antenna can be designed to extend enough the coverage of dual band(PCS+IMT-2000). The measurements and computations are confirmed to operating of the our broadband antenna, whose electrical characteristics have an attractive feature as handset communication applications.

  • PDF