• Title/Summary/Keyword: Antarctic Science

Search Result 180, Processing Time 0.03 seconds

Variation of Biogenic Opal Production on the Conrad Rise in the Indian Sector of the Southern Ocean since the Last Glacial Period (남극해 인도양 해역에 위치한 콘래드 해령 지역의 마지막 빙하기 이후 생물기원 오팔 생산의 변화)

  • JuYeon Yang;Minoru Ikehara;Hyuk Choi;Boo-Keun Khim
    • Ocean and Polar Research
    • /
    • v.45 no.3
    • /
    • pp.141-153
    • /
    • 2023
  • Biological pump processes generated by diatom production in the surface water of the Southern Ocean play an important role in exchanging CO2 gas between the atmosphere and ocean. In this study, the biogenic opal content of the sediments was measured to elucidate the variation in the primary production of diatoms in the surface water of the Southern Ocean since the last glacial period. A piston core (COR-1bPC) was collected from the Conrad Rise, which is located in the Indian sector of the Southern Ocean. The sediments were mainly composed of siliceous ooze, and sediment lightness increased and magnetic susceptibility decreased in an upward direction. The biogenic opal content was low (38.9%) during the last glacial period and high (73.4%) during the Holocene, showing a similar variation to that of Antarctic ice core ΔT and CO2 concentration. In addition, the variation of biogenic opal content in core COR-1bPC is consistent with previous results reported in the Antarctic Zone, south of the Antarctic Polar Front, in the Southern Ocean. The glacial-interglacial biogenic opal production was influenced by the extent of sea ice coverage and degree of water column stability. During the last glacial period, the diatom production was reduced due to the penetration of light being limited in the euphotic zone by the extended sea ice coverage caused by the lowered seawater temperature. In addition, the formation of a strong thermocline in more extensive areas of sea ice coverage led to stronger water column stability, resulting in reduced diatom production due to the reduction in the supply of nutrient-rich subsurface water caused by a decrease in upwelling intensity. Under such environmental circumstances, diatom productivity decreased in the Antarctic Zone during the last glacial period, but the biogenic opal content increased rapidly under warming conditions with the onset of deglaciation.

Fluoride Migration of Frozen Antarctic Krill According to Thawing Methods (해동방법에 의한 냉동크릴의 불소이동)

  • Kim, Kil-Hwan;Kim, Dong-Man;Kim, Young-Ho;Yoon, Hye-Hyun
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.168-171
    • /
    • 1990
  • This study was purposed to elucidate the migration phenomenon of fluoride from the chitinous sections into the muscle flesh of the frozen krill during thawing. The fluoride content ratio between chitinous sections and muscle flesh in the frozen krill was 94.8 : 5.2. Among the several thawing methods used, migration velocity of fluoride was the highest in the krill thawed with microwave and the lowest in the krill thawed at low temperature $(4^{\circ}C)$. The migrated amount of fluoride after thawing was various depended upon the thawing methods, and the increased amount during thawing was 2-5 times higher than Initial amount before thawing.

  • PDF

Accumulation of Heavy Metals in the Antarctic Clam, Laternula elliptica, and in the Korean coastal Clam, Ruditapes philppinarum

  • Lee, Yong-Seok;Jo, Yong-Hun;Byun, In-Seon;Kang, Bo-Ra;Kang, Se-Won;Jeong, Kye-Heon;Ji, Jung-Youn;Ahn, In-Yeong
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2004.12a
    • /
    • pp.63-68
    • /
    • 2004
  • Immunohistochemical and ultrastructural experiments were conducted to find out heavy metal accumulation in some selected organs such as the kidney, the digestive gland, and the gill of the Antarctic clam Laternula elliptica and R. philippinarum. According to the immunohistochemical study the subject organs of the clam showed reactions indicating the presence of MT (metallothionein), a metal-binding protein involved in metal detoxifying process. Examination under the transmission electron microscope also revealed that other ligands may play a role in metal accumulating and detoxifying process in L. elliptica and R. philippinarum. In the artificial exposure of the clam to Cd, the clams showed immediate subcellular responses. The level of the anti-MT reactions became higher in the proportion to the degree of pollution of their habitat and to the period of Cd exposure. These suggest that the two species can be used as efficient biomarkers for Cd exposure in the natural environment.

  • PDF

Measurement of 137Cs in Ice Core Samples from Antarctica

  • Lim, S.I.;Kim, D.H.;Huh, J.Y.;Lee, J.;Hahn, I.S.;Han, Y.C.;Hur, S.D.;Hwang, H.J.;Kang, W.G.;Kim, Y.D.;Lee, E.K.;Lee, M.H.
    • Journal of the Korean Physical Society
    • /
    • v.73 no.9
    • /
    • pp.1263-1268
    • /
    • 2018
  • Three different ice core samples from Antarctica were analyzed to identify activity concentrations of radioactive isotopes. Tracking migration of radioactive isotopes to Antarctica can provide a key clue to understand global environmental changes caused by radiation exposures because the Antarctic ice cores can preserve unique characteristics of various environmental conditions. We are particularly interested in the $^{137}Cs$ nucleus, because it is closely related to radiation exposure from nuclear power plant accidents and nuclear bomb tests. With its half life of $30.17{\pm}0.03$ years, $^{137}Cs$ can also be used to assess the age of sedimentation occurring after around the year 1945. We selected three ice core samples, called Tarn8, Styx27, and H25, from different time periods; the Tarn8 sample is known to be from earlier than ~ 1000 AD, the Styx27 sample is approximately from the year 1945, and the H25 sample is from the year 2012. Radioactive isotope measurements of the ice core samples were performed using a 100% HPGe detector at Cheongpyeong Underground Radiation Laboratory (CURL). We measured the activity of $^{137}Cs$ in the H25 sample to be $0.98{\pm}0.82mBq/kg$. Although the activity has a large uncertainty mainly due to the limited sample quantity, the $^{137}Cs$ isotopes in the Antarctic ice core were measured for the first time in Korea.

Influences of Antarctic Ocean Krill (Euphausia superba) on Lipid Components and A/G Ratio in Rats (남빙양 krill이 흰쥐의 혈청 지질성분 및 알부민/글로불린 비에 미치는 영향)

  • Oh, Da-Young;Jin, Dong-Hyeok;Kang, Dong-Soo;Lee, Young-Geun;Kim, Han-Soo
    • Journal of Environmental Science International
    • /
    • v.27 no.11
    • /
    • pp.991-997
    • /
    • 2018
  • The aim of the study were to investigate the influences of krill (Euphausia superba) meal on the body weight, lipid metabolism functional improvement, blood glucose level, protein component in the sera of rats which fed experimental diets for 5 weeks. Serum concentrations of total cholesterol, Low-Density Lipoprotein (LDL)-cholesterol, free cholesterol, triglyceride (TG), phospholipid (PL) and blood glucose were higher in the control diet group (G1 group) than the control diet plus 10% krill meal group (G2 group), the control diet plus 20% krill meal group (G3 group), the control diet plus 30% krill meal group (G4 group), and a general dose and time independent one-way analysis of variance was performed to assess efficacy. Conversely depending on the content of krill meal for the High-Density Lipoprotein (HDL)-cholesterol level, it showed higher results. The concentrations of total protein, albumin and globulin in sera, there were not significant difference among the groups (p<0.05). The results indicate that a krill meal diet effectively inhibited increases in lipid elevation, blood glucose level in the sera of rats.

Exogenous Indole Regulates Lipopeptide Biosynthesis in Antarctic Bacillus amyloliquefaciens Pc3

  • Ding, Lianshuai;Zhang, Song;Guo, Wenbin;Chen, Xinhua
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.5
    • /
    • pp.784-795
    • /
    • 2018
  • Bacillus amyloliquefaciens Pc3 was isolated from Antarctic seawater with antifungal activity. In order to investigate the metabolic regulation mechanism in the biosynthesis of lipopeptides in B. amyloliquefaciens Pc3, GC/MS-based metabolomics was used when exogenous indole was added. The intracellular metabolite profiles showed decreased asparagine, aspartic acid, glutamine, glutamic acid, threonine, valine, isoleucine, hexadecanoic acid, and octadecanoic acid in the indole-treated groups, which were involved in the biosynthesis of lipopeptides. B. amyloliquefaciens Pc3 exhibited a growth promotion, bacterial total protein increase, and lipopeptide biosynthesis inhibition upon the addition of indole. Besides this, real-time PCR analysis further revealed that the transcription of lipopeptide biosynthesis genes ituD, fenA, and srfA-A were downregulated by indole with 22.4-, 21.98-, and 26.0-fold, respectively. It therefore was speculated that as the metabolic flux of most of the amino acids and fatty acids were transferred to the synthesis of proteins and biomass, lipopeptide biosynthesis was weakened owing to the lack of precursor amino acids and fatty acids.

Dimethylsulfide and Dimethylsulfoniopropionate Production in the Antarctic Pelagic Food Web

  • Kasamatsu, Nobue;Odate, Tsuneo;Fukuchi, Mitsuo
    • Ocean and Polar Research
    • /
    • v.27 no.2
    • /
    • pp.197-203
    • /
    • 2005
  • Dimethylsulfide (DMS) is the most abundant form of volatile sulfurs in the ocean. Many biogeochemical studies have been conducted in the past several decades to unveil the processes driving the production, transformation and removal of DMS. They have shown that the Southern Ocean is an area with one of the highest levels of DMS concentrations during the austral summer in the global oceans. It has recently been observed that Antarctic krill, Euphausia superba, produces DMS and dissolved dimethyl-sulfoniopropionate (DMSP) in its gazing process. Copepods also produce DMS, and the potential production rates of DMS in the Southern Ocean by krill and copepods are estimated to be as much as $21{\mu}mol\;m^{-2}d^{-1}$ and $0.6{\mu}mol\;m^{-2}d^{-1}$, respectively. These production rates of zooplankton and the presence of phytoplanktot which have high DMSP contents in their cells, might facilitate in situ DMS production in the Southern Ocean.