• Title/Summary/Keyword: Ansoft HFSS

Search Result 65, Processing Time 0.028 seconds

A Planar Reversed-Triangle Monopole Antenna for UWB Communication (UWB 통신을 위한 평판 역삼각형 모노폴 안테나)

  • Choi, Hyung-Seok;Choi, Kyoung;Hwang, Hee-Yong
    • Journal of Industrial Technology
    • /
    • v.31 no.A
    • /
    • pp.109-112
    • /
    • 2011
  • In this paper, we proposed a planar reversed triangle monopole antenna for UWB(Ultra Wideband) communication. RF-60A substrate of 0.64 mm thickness and 6.15 relative permitivity and 0.035 mm conductor of thickness and loss tangent 0.0025 is used for implementation. We have used Ansoft $HFSS^{TM}$(High Frequency Structure Simulator) to simulate the proposed antenna. The proposed antenna showed return losses about -10 dB, nearly omni-directional radiation patterns and maximum gains are over -5 dBi at the frequency band from 3.1 GHz to 10.6 GHz for ultra wide band communication.

  • PDF

A Design Method of the 94GHz(W-Band) Waveguide Harmonic Voltage Controlled Oscillator for the Armor Sensor (장갑표적 감지센서용 94GHz 도파관 하모닉 전압조정발진기 설계 기법)

  • Roh, Jin-Eep;Choi, Jae-Hyun;Li, Jun-Wen;Ahn, Bierng-Chearl
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.8 no.3 s.22
    • /
    • pp.64-72
    • /
    • 2005
  • In this paper, we propose a design method of the millimeter-wave(W-Band) waveguide cavity harmonic voltage controlled oscillator(VCO) using a Gunn diode for the armor sensor. Using the 3-dimensional simulation tool(Ansoft $HFSS^{TM}$), we were able to find the impedance matching point between waveguide and Gunn diode and estimate the oscillation frequency. A varactor diode is used for the frequency tuning, and we find out the equation for the calculation of the tunable frequency range. The designed VCO shows good performances; 17dBm output power at 94GHz center frequency, 520MHz frequency tuning range similar to the estimated value(480MHz).

Design and Optimization of Four Element Triangular Dielectric Resonator Antenna using PSO Algorithm for Wireless Applications

  • Dasi swathi
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.10
    • /
    • pp.67-72
    • /
    • 2023
  • This paper portrays the design and optimization of a wideband four element triangular dielectric resonator antenna (TDRA) using PSO. The proposed antenna's radiation characteristics were extracted using Ansoft HFSS software. At a resonant frequency of 5-7 GHz, the four element antenna provides nearly 21 percent bandwidth and the optimized gives 5.82 dBi peak gain. The radiation patterns symmetry and uniformity are maintained throughout the operating bandwidth. for WLAN (IEEE 802.16) and WiMAX applications, the proposed antenna exhibits a consistent symmetric monopole type radiation pattern with low cross polarisation. The proposed antenna's performance was compared to that of other dielectric resonator antenna (DRA) shapes, and it was discovered that the TDRA uses a lot less radiation area to provide better performance than other DRA shapes and PSO optimized antenna increases the gain of the antenna

Sapphire Based 94 GHz Coplanar Waveguide-to-Rectangular Waveguide Transition Using a Unilateral Fin-line taper (평면형 Fin-line 테이퍼를 이용한 사파이어 기반의 94 GHz CPW-구형 도파관 변환기)

  • Moon, Sung-Woon;Lee, Mun-Kyo;Oh, Jung-Hun;Ko, Dong-Sik;Hwang, In-Seok;Rhee, Jin-Koo;Kim, Sam-Dong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.10
    • /
    • pp.65-70
    • /
    • 2008
  • We design and fabricate the 94 GHz Coplanar waveguide(CPW)-to-rectangular waveguide transition that is transmits signal smoothly between the CPW, which is a popular transmission line of the planar circuits, and rectangular waveguide for the 94 GHz transceiver system. The proposed transition composed of the unilateral fin-line taper and open type CPW-to-slot-line transition is based on the hard and inflexible sapphire for the flip-chip bonding of the planar MMICs using conventional MMIC technology. We optimize a single section transition to achieve low loss by using an EM field solver of Ansoft's HFSS and fabricate the back- to-back transition that is measured by Anritsu ME7808A Vector Network Analyzer in a frequency range of $85{\sim}105$ GHz. From the measurement and do-embedding CPW with 3 mm length, an insertion and return loss of a single-section transition are 1.7 dB and more an 25 than at 94 GHz, respectively.

Design and Implementation of UWB Antenna with Band Rejection Characteristics (대역저지 특성을 갖는 초광대역 안테나 설계 및 구현)

  • Yang, Woon Geun;Nam, Tae Hyeon;Yu, Jae Seong;Oh, Hee Oun
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.1
    • /
    • pp.31-36
    • /
    • 2018
  • In this paper, we designed and implemented an ultra wideband(UWB) antenna with band rejection characteristics. The proposed antenna consists of a planar radiation patch with slots and ground planes on both sides. Due to the slots in the radiation patch, the antenna shows band rejection characteristics. U-type slot contributes for wireless local area network(WLAN, 5.15~5.825 GHz) band rejection and n-type slot contributes for X-Band(7.25~8.395 GHz) band rejection. To make voltage standing wave ratio(VSWR) less than 2.0 for UWB frequency band except rejection bands, the shapes of planar radiation patch and ground plane was modified. The Ansoft 's high frequency structure simulator(HFSS) was used for the design process and simulations of the proposed antenna. The simulated antenna showed VSWR less than 2.0 for all UWB band excepts for dual rejection bands of 5.15 ~ 5.94 GHz and 7.02 ~ 8.45 GHz. And measured VSWR for the implemented antenna is less than 2.0 for all UWB band of 3.10~10.60 GHz excluding dual rejection bands of 5.12~5.95 GHz and 7.20~8.58 GHz.

Design and Implementation of Wideband Patch Antenna with Folded and Shorted Structure for 5 GHz WLAN (폴디드 구조와 단락 구조를 이용한 5 GHz 무선 랜용 광대역 패치 안테나 설계 및 구현)

  • Kim Yong-Hee;Han Jun-Hee;Lee Won-Kew;Yang Woon-Geun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.8 s.111
    • /
    • pp.760-766
    • /
    • 2006
  • In this paper, we present a wideband patch antenna with folded and shorted structure for 5 GHz WLAN(Wireless Local Area Network). The proposed antenna used folded and shorted structure in the rectangular patch for miniaturization and wide frequency bandwidth. The antenna was designed by using 3D simulation program, HFSS(High Frequency Structure Simulator) software of the Ansoft company and the implemented antenna was measured by using HP 8720c network analyzer and far field measurement chamber. Simulation result on the return loss shows fairly good characteristic of at least 13.41dB in whole frequency range of interests, and the 10dB bandwidth is 1,523MHz which shows wide bandwidth characteristic. And the simulated maximum gain of the proposed antenna is 6.57 dBi at 5.825GHz. Measured result for the 10dB bandwidth of the implemented folded and shorted structure antenna is 1,377 MHz. Measured maximum gain of the implemented antenna is 6.87dBi at 5.775GHz. Measured results for the implemented antenna showed applicable performances for the 5 GHz WLAN.

Design and Implementation of Plannar S-DMB Antenna with Omni-Directional Radiation Pattern Using Metamaterial Technique (메타 물질 기법을 이용한 전방향성 복사 패턴을 갖는 평면형 S-DMB 안테나 설계 및 구현)

  • An, Chan-Kyu;Yu, Ju-Bong;Jeon, Jun-Ho;Kim, Woo-Chan;Yang, Woon-Geun;Nah, Byung-Ku;Lee, Jae-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.12
    • /
    • pp.1343-1351
    • /
    • 2010
  • In this paper, a novel patch antenna based on the metamaterial CRLH(Composite Right- and Left-Handed) structure is designed, implemented, and measured. Contrary to the standard microstrip patch's fundamental resonance mode of half-wavelength or its positive multiple, the proposed antenna shows the in-phase electric field over the entire antenna. The proposed antenna has a desired omni-directional field pattern which is typical characteristic of $\lambda/4$ monopole antenna, and also shows the merit of low profile. HFSS(High Frequency Structure Simulator) of Ansoft which is based on the FEM(Finite Element Method) is used to simulate the proposed antenna. FR-4 substrate of thickness 1.6 mm and relative permitivity 4.4 is used for the proposed antenna implementation. The implemented antenna showed VSWR (Voltage Standarding Wave Ratio)$\leq$2 for the frequency band from 2.63 GHz to 2.655 GHz which is used for S-DMB (Satellite-Digital Multimedia Broadcasting) service. And measured peak gain and efficiency are 2.65 dBi and 81.14 %, respectively.

Design and Implementation of UWB Antenna with 5G Mobile Communication and WLAN Bands Rejection Characteristics (5세대 이동통신 및 WLAN 대역저지 특성을 갖는 UWB 안테나 설계 및 구현)

  • Yang, Woon Geun;Nam, Tae Hyeon
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.4
    • /
    • pp.336-341
    • /
    • 2018
  • In this paper, we designed and implemented an ultra wideband (UWB) antenna with 5G mobile communication and WLAN bands rejection characteristics. The proposed antenna consists of a planar radiation patch with two slots, parasitic elements on both sides of the strip line and ground plane on back side. The upper n-type slot contributes for 5G mobile communication band (3.42~3.70 GHz) rejection and the lower n-type slot contributes for wireless local area network (WLAN) band (5.15~5.825 GHz) rejection. Parasitic elements were used in order to satisfy the voltage standing wave ratio (VSWR) less than or equal to 2.0 for UWB band (3.10~10.60 GHz) except two rejection bands. The Ansoft's high frequency structure simulator (HFSS) was used for antenna design and simulations. The simulated antenna showed dual rejection bands of 3.36~3.71 GHz and 5.13 ~ 5.92 GHz in UWB band, and measured result for the implemented antenna showed dual rejection bands of 3.40~3.72 GHz and 5.08~5.858 GHz. Simulated and measured VSWRs are less than or equal to 2.0 for all UWB band except dual rejection bands.

Design of Circular Ring Antenna with Half-Circular Strip for WLAN/WiMAX Applications (WLAN/WiMAX 시스템에 적용 가능한 반원 스트립 구조를 갖는 원형 링 안테나의 설계)

  • Yoon, Joong-Han
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.4
    • /
    • pp.417-424
    • /
    • 2014
  • In this paper, a dual-band circular ring monopole antenna with semi-circular strip for WLAN(Wireless Local Area Networks)/WiMAX(World interoperability for Microwave Access) applications. The proposed antenna is based on a planar monopole design, and composed of half circular strip for dual-band operation which cover WLAN and WiMAX frequency bands. To obtain the optimized parameters, we used the simulator, Ansoft's High Frequency Structure Simulator(HFSS) and found the parameters that greatly effect antenna characteristics. Using the obtained parameters, the antenna is fabricated. The numerical and experiment results demonstrated that the proposed antenna satisfied the -10 dB impedance bandwidth requirement while simultaneously covering the WLAN and WiMAX bands. And characteristics of gain and radiation patterns are obtained for WLAN/WiMAX frequency bands.

Modeling of the Power/Ground Plane Noise Including Dielectric Substrate Loss (유전체 손실을 고려한 전원부에서 유기되는 노이즈 모델링에 관한 연구)

  • Kim, Jong-Min;Nam, Ki-Hoon;Ha, Jung-Rae;Song, Ki-Jae;Na, Wan-Soo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.2
    • /
    • pp.170-178
    • /
    • 2010
  • In this paper, we propose the modeling of the power/ground plane which includes complex dielectric permittivity and loss tangent for the power/ground coupled noise. In order to estimate the effects of the dielectric substrate for the coupled noise, we used full-wave simulators, HFSS(High Frequency Structure Simulation) and MWS(MicroWave Studio). The simulated results for the commercial substrates are compared with the measured values. TLM(Transmission Line Method) was used for the calculation of power plane impedance using Debye model which depicts the dielectric loss of PCB. Finally, impedance from proposed circuit model showed very good coincidence to the measured data.