• Title/Summary/Keyword: Ansari-Bradley test

Search Result 2, Processing Time 0.013 seconds

Polynomially Adjusted Normal Approximation to the Null Distribution of Ansari-Bradley Statistic

  • Ha, Hyung-Tae;Yang, Wan-Youn
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.6
    • /
    • pp.1161-1168
    • /
    • 2011
  • The approximation for the distribution functions of nonparametric test statistics is a significant step in statistical inference. A rank sum test for dispersions proposed by Ansari and Bradley (1960), which is widely used to distinguish the variation between two populations, has been considered as one of the most popular nonparametric statistics. In this paper, the statistical tables for the distribution of the nonparametric Ansari-Bradley statistic is produced by use of polynomially adjusted normal approximation as a semi parametric density approximation technique. Polynomial adjustment can significantly improve approximation precision from normal approximation. The normal-polynomial density approximation for Ansari-Bradley statistic under finite sample sizes is utilized to provide the statistical table for various combination of its sample sizes. In order to find the optimal degree of polynomial adjustment of the proposed technique, the sum of squared probability mass function(PMF) difference between the exact distribution and its approximant is measured. It was observed that the approximation utilizing only two more moments of Ansari-Bradley statistic (in addition to the first two moments for normal approximation provide) more accurate approximations for various combinations of parameters. For instance, four degree polynomially adjusted normal approximant is about 117 times more accurate than normal approximation with respect to the sum of the squared PMF difference.

Optimal design of a nonparametric Shewhart-Lepage control chart (비모수적 Shewhart-Lepage 관리도의 최적 설계)

  • Lee, Sungmin;Lee, Jaeheon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.2
    • /
    • pp.339-348
    • /
    • 2017
  • One of the major issues of statistical process control for variables data is monitoring both the mean and the standard deviation. The traditional approach to monitor these parameters is to simultaneously use two seperate control charts. However there have been some works on developing a single chart using a single plotting statistic for joint monitoring, and it is claimed that they are simpler and may be more appealing than the traditonal one from a practical point of view. When using these control charts for variables data, estimating in-control parameters and checking the normality assumption are the very important step. Nonparametric Shewhart-Lepage chart, proposed by Mukherjee and Chakraborti (2012), is an attractive option, because this chart uses only a single control statistic, and does not require the in-control parameters and the underlying continuous distribution. In this paper, we introduce the Shewhart-Lepage chart, and propose the design procedure to find the optimal diagnosis limits when the location and the scale parameters change simultaneously. We also compare the efficiency of the proposed method with that of Mukherjee and Chakraborti (2012).