• Title/Summary/Keyword: Anoxic reactor

Search Result 163, Processing Time 0.025 seconds

Adaptive Control of Denitrification by the Extended Kalman Filter in a Sequencing Batch Reactor (확장형칼만필터에 의한 연속회분식반응조의 탈질 적응제어)

  • Kim, Dong Han
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.6
    • /
    • pp.829-836
    • /
    • 2006
  • The reaction rate of denitrification is primarily affected by the utilization of organics that are usually limited in the anoxic period in a sequencing batch reactor. It is necessary to add an extemal carbon source for sufficient denitrification. An adaptive model of state-space based on the extended Kalman filter is applied to manipulate the dosage rate of extemal carbon automatically. Control strategies for denitrification have been studied to improve control performance through simulations. The normal control strategy of the constant set-point results in the overdosage of external carbon and deterioration of water quality. To prevent the overdosage of external carbon, improved control strategies such as the constrained control action, variable set-point, and variable set-point after dissolved oxygen depletion are required. More stable control is obtained through the application of the variable set-point after dissolved oxygen depletion. The converging value of the estimated denitrification coefficient reflects conditions in the reactor.

A Submerged Membrane Bioreactor with Anoxic-oxic Recycle for the Treatment of High-strength Nitrogen Wastewater

  • Shim, Jin-Kie;Yoo, Ik-Keun;Lee, Young-Moo
    • Korean Membrane Journal
    • /
    • v.3 no.1
    • /
    • pp.32-38
    • /
    • 2001
  • Using the hollow fiber membrane module in a lab-scale membrane bioreactor, the anoxic- oxic (AO) process for nitrogen removal was operated for about one year. For the influent wastewater containing 1,200-1,400 mg $1^{-1}$ of CODcr and 200-310 mg $1^{-1}$ of nitrogen, this process achieved a high quality effluent of less than 30 mgCOD $liter^{-1}$ and 50 mgN $liter^{-1}$. The removal rate of organics was above 98% at a loading rate larger than 2.5 kgCOD $m^{-3}$$d^{-1}$. When the internal recycle from the oxic to the anoxic reactor changed room 2n to 600% rout the influent flow rate, the nitrogen removal rate increased from about 70 to 90% at a loading rate of 0.4 kgT-N m-s d-1. The initial increase of transmembrane pressure (TMP) was observed after a 4-month operation while maintaining the flux and MLSS concentration at 7-9 1 $m^2$ $h^{-1}$ and 6,000-14,000 mg $1^{-1}$, respectively. The TMP could be maintained below 15 cmHg for an 8-month operation. The chemical cleaning with an acid followed by an immersion in an alkali solution gave better cleaning result with the membrane operated for 10 month rather than that only by an alkali immersion.

  • PDF

The Operating Characteristics of SMMIAR process for Biological Nitrogen.phosphorus Removal (생물학적 질소.인 제거를 위한 SMMIAR(Submerged Moving Media Intermittent Aeration Reactor) 공정의 운전 특성)

  • 김홍태;김학석;김규창
    • Journal of Environmental Science International
    • /
    • v.12 no.1
    • /
    • pp.55-61
    • /
    • 2003
  • This study was carried out to obtain the operating characteristics of SMMIAR process for biological nitrogenㆍphosphorus removal. SMMIAR was operated at HLR(Hydraulic loading rate) of 39.6, 52.8, 63.4 and 79.2 $\ell$/$m^2$/d respectively and the operating parameters such as intermittent aeration time ratio of aerobic/anoxic, DO and microorganism concentration were changed to confirm the optimum operating condition. The concentrations of the wastewater BOD, TN(Total nitrogen) and TP(Total phosphorus) were 150, 30 and 7.5mg/$\ell$ respectively. Achieving better removal efficiencies of BOD, TN and TP up to 90, 85.4 and 95.4% respectively, we must keep in operation condition of SMMIAR by 0.75 of time ratio of aerobic/anoxic and by minimum 45 minutes of oxic period simultaneously.

Aeration control based on respirometry in a sequencing batch reactor (호흡률에 기반한 연속회분식반응조의 포기공정 제어)

  • Kim, Donghan;Kim, Sunghong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.1
    • /
    • pp.11-18
    • /
    • 2018
  • As the sequencing batch reactor process is a time-oriented system, it has advantages of the flexibility in operation for the biological nutrient removal. Because the sequencing batch reactor is operated in a batch system, respiration rate is more sensitive and obvious than in a continuous system. The variation of respiration rate in the process well represented the characteristics of biological reactions, especially nitrification. The respiration rate dropped rapidly and greatly with the completion of nitrification, and the maximum respiration rate of nitrification showed the activity of nitrifiers. This study suggested a strategy to control the aeration of the sequencing batch reactor based on respirometry. Aeration time of the optimal aerobic period required for nitrification was daily adjusted according to the dynamics of respiration rate. The aeration time was mainly correlated with influent nitrogen loadings. The anoxic period was extended through aeration control facilitating a longer endogenous denitrification reaction time. By respirometric aeration control in the sequencing batch reactor, energy saving and process performance improvement could be achieved.

Positive Pilot Research of SBR Process with Flexible Vertical (가변형 간벽을 이용한 SBR 공정의 실증 Pilot 연구)

  • Kim, Man-Soo;Park, Jong-Woon;Park, Chul-Whi
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.4
    • /
    • pp.438-444
    • /
    • 2005
  • This study is to install the flexible vertical in order to separate not only the time but also the space in the single reactor by opening and closing the flexible vertical, and to intensify the aerobic, anaerobic and anoxic reactions by reducing the time to activate the microorganism for nitrification, denitrification, release of organic phosphate and luxury uptake of ortho-phosphate. Eventually the result of this study obtained each 90.9%, 76.4% for the removal efficiency of total nitrogen and phosphate. Also, content rate of phosphate at excess sludge was higher $25{\sim}30%$ for SBR reactor with the flexible verticals than existing SBR process. It would be concluded that SBR reactor with flexible verticals is promising for nitrogen and phosphate removal conditions than conventional SBR processes.

A Study on Phosphorus Removal Effects Per Iron Surface Area in FNR Process (철전기분해장치(FNR)에서 철판의 표면적이 인제거에 미친 영향에 관한 연구)

  • Kim, Young-Gyu
    • Journal of Environmental Health Sciences
    • /
    • v.38 no.6
    • /
    • pp.568-574
    • /
    • 2012
  • Objectives: The purpose of this experiment is to understand the phosphorus removal ratio effects of iron plates per unit of surface area through the iron electrolysis system, which consists of an anoxic basin, aerobic basin, and iron precipitation apparatus. Methods: Iron electrolysis, which uses an iron precipitation reactor in anoxic and oxic basins, consisted of iron plates with total areas of 400 $cm^2$, 300 $cm^2$ and 200 $cm^2$ respectively. The FNR process was operated with a hydraulic retention time and a sludge retention time of 12 hours and three days, respectively. Wastewater used in the experiments was prepared by dissolving $KH_2PO_4$ in influent water. Results: The iron plates 400 $cm^2$ (16.6 $mA/cm^2$), 300 $cm^2$ (13.3 $mA/cm^2$) and 200 $cm^2$ (7.3 $mA/cm^2$) in surface area in the phosphorus reactor had respective phosphorus of 2.4 mg/l, 2.7 mg/l and 3.2 mg/l in the effluent and phosphorus removal respective efficiencies of 90.3%, 89.1% and 87.1%. The effluent in the reactor, where the iron plate was not used, had relatively very low phosphorus removal efficiency showing phosphorus concentration of 15.3 mg/l and a phosphorus removal efficiency about 38.3%. Phosphorus removal per ferrous was 0.472 mgP/mgFe in the iron electrolysis system where the surface area of iron was low. Phosphorus pollution load per active surface area and the phosphorus removal efficiency had an interrelation of RE = -0.27LS + 89.0 (r = 0.85). Conclusion: With larger iron plate surface area, the elution of iron concentration and phosphorus removal efficiency was higher. The removal efficiency of phosphorus has decreased by increasing the initial phosphate concentration in the iron electrodes. This shows a tendency of decreasing phosphorus removal efficiency because of decreasing of iron deposition as the phosphorus pollution load per active surface area increases.

Comparison of Anaerobic and Aerobic Sequencing Batch Reactor System for Liquid Manure Treatment (액상가축분뇨처리에서 혐기성 및 호기성 연속 회분식 반응조 시스템의 비교 연구)

  • Hong, Ji-Hyung
    • Journal of Animal Environmental Science
    • /
    • v.14 no.2
    • /
    • pp.113-118
    • /
    • 2008
  • Sequencing batch operation consists of fill, react, settle and decant phases in the same reactor. Operation consists of anaerobic, anoxic and oxic (aerobic) phases when nutrient removal from the wastewater is desired. Since the same reactor is used for biological oxidation (or mixing) and sedimentation in aerobic and anaerobic SBR operations, capital and operating costs are lower than conventional activated sludge process and conventional anaerobic digestion process, respectively. Therefore, Aerobic SBR and Anaerobic SBR operations may be more advantageous far treatment of small volume animal wastewater in rural areas.

  • PDF

The Nitrogen Removal of Municipal Wastewater with HRT using CNR Process (CNR공법의 체류시간에 따른 도시하수의 질소제거)

  • 김영규;양익배;김인배
    • Journal of Environmental Health Sciences
    • /
    • v.26 no.3
    • /
    • pp.98-102
    • /
    • 2000
  • The aim of this study was to evaluate on the removal effect of total nitrogen in municipal wastewater by decreasing hydraulic retention time(HRT) from 6 hour to 4 hour on CNR process. CNR-A(Cilia Nutrient Removal) is the process combining A2/O process with cilium media of H2L corporation. The removal efficiencies for T-N were 63.1% in A-1 reactor, and 73.5% in A-2 reactor and 77.0% in A-3 reactor. The specific nitrification(g-NH3-N/g-MLVSS.d) of Oxic in CNR-A process was 0.07-0.32. The specific denitrification in Anoxic and the specific nitrification inOxic was higher in HRT 4 hour because of optimum F/M ratio.

  • PDF

Treatment of Fish Processing Wastewater Using Sequencing Batch Reactor (SBR) (연속회분식 반응기를 이용한 수산물 가공폐수 처리)

  • Paik, Byeong Cheon;Shin, Hang Sik
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.8 no.1
    • /
    • pp.18-26
    • /
    • 1994
  • This research investigated efficient operation mode for the successful performance of SBR(sequencing batch reactor) treating fish processing wastewater, and the effect of sodium chloride (NaCl) on treatment efficiency. 2-hour-annerobic, 6-hour-aerobic and 3-hour-anoxic operation during reaction period was found an effective operating method for organic and nitrogen removal from fish processing wastewater in SBR system. The average removal efficiencies of COD, BOD, and total nitrogen in SBR operated continuousely were 91%, 95%, and 67.1%, respectively. The estimated values of biomass yield coefficient(Y), microbial decay coefficient($K_d$), and bioreaction rate constant(K) were $0.35gMLSS/gCOD_{removed}$, $0.015day^{-1}$, and $0.209hr^{-1}$, respectively. As NaCl concentration increased from 5 to 30g/L, sludge settleability was cnhanced but organic removal in the reactor was decreased. NaCl of influent had considerable relationship with COD removal, whereas it did not significant affect nitrogen removal.

  • PDF

Sequential Anoxic/Aerobic Biofilm Reactors and MF Membrane System for the Removal of Perchlorate and Nitrate (무산소/호기생물막반응조와 MF막의 연속처리에 의한 퍼클로레이트와 질산염 제거)

  • Choi, Hyeoksun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.5
    • /
    • pp.301-306
    • /
    • 2013
  • This research was conducted to investigate whether sequential anoxic/aerobic biofilm reactors and microfilteration (MF) membrane system can be used as a direct treatment for the removal of perchlorate and nitrate in groundwater. The biofilm process consisted of an anoxic first stage to remove perchlorate and nitrate and aerobic second stage to remove remaining acetate used as a carbon source for dissimilatory reduction of perchlorate and nitrate. In final stage, hollow fiber MF membrane was used to remove turbidity. In this research, perchlorate was reduced from the influent concentration of 102 ${\mu}/L$ to below the IC detection level (5 ${\mu}/L$) and nitrate was reduced from 61.8 mg/L (14 mg/L $NO_3$-N) to 4.4 mg/L (1 mg/L $NO_3$-N). Acetate used as a carbon source was consumed from 179 mg/L $CH_3COO-$ to 117 and 11 mg/L $CH_3COO^-$ in effluents from anoxic and aerobic biofilm reactors, respectively. Turbidity was reduced from 3.0 NTU to 1.5, 0.3, and 0.2 NTU in effluents from anoxic/aerobic biofilm reactors and MF membrane, respectively. It is expected that the sequential anoxic/aerobic biofilm reactors and MF membrane system can efficiently remove perchlorate and nitrate in surface water or groundwater.