• Title/Summary/Keyword: Anoxic ground water

Search Result 4, Processing Time 0.02 seconds

Corrosion of Copper in Anoxic Ground Water in the Presence of SRB

  • Carpen, L.;Rajala, P.;Bomberg, M.
    • Corrosion Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.147-153
    • /
    • 2018
  • Copper is used in various applications in environments favoring and enabling formation of biofilms by naturally occurring microbes. Copper is also the chosen corrosion barrier for nuclear waste in Finland. The copper canisters should have lifetimes of 100,000 years. Copper is commonly considered to be resistant to corrosion in oxygen-free water. This is an important argument for using copper as a corrosion protection in the planned canisters for spent nuclear-fuel encapsulation. However, microbial biofilm formation on metal surfaces can increase corrosion in various conditions and provide conditions where corrosion would not otherwise occur. Microbes can alter pH and redox potential, excrete corrosion-inducing metabolites, directly or indirectly reduce or oxidize the corrosion products, and form biofilms that create corrosive microenvironments. Microbial metabolites are known to initiate, facilitate, or accelerate general or localized corrosion, galvanic corrosion, and intergranular corrosion, as well as enable stress-corrosion cracking. Sulfate-reducing bacteria (SRB) are present in the repository environment. Sulfide is known to be a corrosive agent for copper. Here we show results from corrosion of copper in anoxic simulated ground water in the presence of SRB enriched from the planned disposal site.

Sulphate Reducing Bacteria and Methanogenic Archaea Driving Corrosion of Steel in Deep Anoxic Ground Water

  • Rajala, P.;Raulio, M.;Carpen, L.
    • Corrosion Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.221-227
    • /
    • 2019
  • During the operation, maintenance and decommissioning of nuclear power plant radioactive contaminated waste is produced. This waste is stored in an underground repository 60-100 meters below the surface. The metallic portion of this waste comprises mostly carbon and stainless steel. A long-term field exposure showed high corrosion rates, general corrosion up to 29 ㎛ a-1 and localized corrosion even higher. High corrosion rate is possible if microbes produce corrosive products, or alter the local microenvironment to favor corrosion. The bacterial and archaeal composition of biofilm formed on the surface of carbon steel was studied using 16S rRNA gene targeting sequencing, followed by phylogenetic analyses of the microbial community. The functional potential of the microbial communities in biofilm was studied by functional gene targeting quantitative PCR. The corrosion rate was calculated from weight loss measurements and the deposits on the surfaces were analyzed with SEM/EDS and XRD. Our results demonstrate that microbial diversity on the surface of carbon steel and their functionality is vast. Our results suggest that in these nutrient poor conditions the role of methanogenic archaea in corrosive biofilm, in addition to sulphate reducing bacteria, could be greater than previously suspected.

국내 대륙붕 및 육상에 분포하는 탄화수소 가스의 지화학

  • 이영주;정태진;곽영훈;김학주;윤혜수
    • 한국석유지질학회:학술대회논문집
    • /
    • autumn
    • /
    • pp.40-49
    • /
    • 1999
  • The chemical compositions of natural gases and isotopic compositions of hydrocarbon gases were analyzed to characterize the properties of the gases which were found in the exploratory wells from offshore Korea, as well as those dissolved in the ground water onshore in the Pohang area. Natural gases from the offshore area mainly consisted of hydrocarbon gases $(97.98{\~}100{\%})$. The gases were composed of methane $(90{\~}96{\%})$ and minor amounts of heavier components up to $C_{6+}$ Hydrocarbon gases extracted from the groundwater in the Pohang area consisted of methane $(27{\~}376420 ppm)$ and ethane $(19{\~}127 ppm)$. The total amount of hydrocarbon gases was related to the lithology and geological factors surrounding the reservoir. The quantity of the hydrocarbon gases tended to Increase in the Tertiary reservoirs and in the reservoirs where the Tertiary formations were thickly distributed. According to the methane contents, composition of hydrocarbon gases, and stable isotope data, gases from offshore wells are identified as thermogenic in origin, generated during catagenesis stage of the oil window. On the otherhand, based on the methane content $(>99.9\%)$ and isotopic composition $(\delta^{13} C^;\; -73.1{\sim}\;-43.22{\%}_{\circ})$, it is interpretated that the gases from the Pohang area are predominantly composed of biogenic origins, which were generated by the methanogenic bacterial processes under low temperatures and anoxic conditions.

  • PDF

Geochemistry of the hydrocarbon gases in the Pohang Area (포항 지역 지하수에 분포하는 탄화수소 가스의 지화학)

  • Lee Youngjoo;Cheong Taejin;Kim Jinseok;Kim Hagju;Yun Hyesu;Kwak Younghoon
    • The Korean Journal of Petroleum Geology
    • /
    • v.6 no.1_2 s.7
    • /
    • pp.37-43
    • /
    • 1998
  • Chemical components of water, chemical and isotopic compositions of extractable gases were analyzed to characterize the properties of the natural gases which are dissolved in ground water in the Pohang area. Amount of total extracted gases ranges from 27 ml/l to 50.1 ml/l. Hydrocarbon gases are composed of methane ($27{\~}376,420 ppm$) and ethane ($19{\~}127 ppm$). Amount of total hydrocarbon gases is related to the lithology and geological factors around the reservoir. Quantity of hydrocarbon gases tends to increase in the Tertiary reservoirs and in the reservoirs where the Tertiary formations are thick enough. According to the relationship between hydrocarbon gases and total solids in the ground water, it is believed that the hydrocarbon gases were dissolved in the Tertiary formation water. Based on the methane content ($>99.9\%$) and isotopic composition (${\delta}C^{13};-73.1\%_{\circ}{\~}-43.22\%_{\circ}$), we interpret the gases to be of predominantly biogenic origin which were generated by the methanogenic bacterial processes under the low temperature and anoxic conditions.

  • PDF