• Title/Summary/Keyword: Anoxic

Search Result 443, Processing Time 0.028 seconds

A Study on the Treatment of Nutrients and Organic Carbon in Wastewater through Spatial Separation and Internal Recycling in a Modified Oxidation Ditch (격벽에 의한 조분리와 내부반송을 이용한 산화구 시설의 고도처리개선에 관한 연구)

  • Lee, Young-Shin;Oh, Dae-Min
    • Journal of Environmental Health Sciences
    • /
    • v.37 no.1
    • /
    • pp.64-72
    • /
    • 2011
  • This study was performed to assess the removal efficiency on nitrogen, phosphorus and organic carbon in wastewater by spatial separation and internal recycling in a modified oxidation ditch process (modified OD). The performances of the modified OD were evaluated via laboratory-scale experiments. The process was operated at hydraulic retention times of 6-48 hours and solid retention times of 17-38 days. We found that organic carbon removal efficiency increased after the modified OD operation period. T-N removal efficiency remained stable; average T-N concentration of effluent was 8.02 mg/l after modified OD operation. In contrast, T-P concentration of effluent was over 1 mg/l. Nitrogen and phosphorus removal efficiency of modified OD at HRT 12 hr were 83.1% and 74.1%, respectively. Also, maximum efficiency was found at SRTs from 20 to 30 days. T-N removal efficiency was 83.1% at a C/N ratio from 3.0 to 3.5. However, T-N removal efficiency decreased at C/N ratios over 3.5. Also, T-P removal efficiency increased with HRT at C/P ratios in the same condition. Maximum efficiency was 74.1% at a C/P ratio from 25 to 28. T-N removal efficiency was 79.2% and T-P removal efficiency was 65.3% after M4 mode operation (added to the internal recycle line connected to the anoxic reactor). The modified OD with spatial separation and internal recycling developed in this study is, therefore, believed to be an improvement for solving problems in the nutrient removal technologies.

Correlationship of Vertical Distribution for Ammonia Ion, Nitrate Ion and Nitrifying Bacteria in a Fixed Bed Nitrifying Biofilm

  • Choi, Gi-Chung;Byun, Im-Gyu
    • Journal of Environmental Science International
    • /
    • v.21 no.12
    • /
    • pp.1455-1462
    • /
    • 2012
  • The vertical distributions of nitrifying bacteria in aerobic fixed biofilm were investigated to evaluate the relationship between nitrification performance and microbial community at different HRT. Fluorescent in situ hybridization (FISH) and portable ion selective microelectrode system were adopted to analyze microbial communities and ions profiles according to the biofilm depth. Cilia media packed MLE (Modified Ludzack-Ettinger) like reactor composed of anoxic, aerobic I/II was operated with synthetic wastewater having COD 200 mg/L and $NH_4{^+}$-N mg/L at HRT of 6 hrs and 4 hrs. Total biofilm thickness of aerobic I, II reactor at 4 hrs condition was over two times than that of 6 hrs condition due to the sufficient substrate supply at 4 hrs condition (6 hrs; aerobic I 380 ${\mu}m$ and II 400 ${\mu}m$, 4 hrs; aerobic I 830 ${\mu}m$ and II 1040 ${\mu}m$). As deepen the biofilm detection point, the ratio of ammonia oxidizing bacteria (AOB) was decreased while the ratio of nitrite oxidizing bacteria (NOB) was maintained similar distribution at both HRT condition. The ratio of AOB was higher at 4 hrs than 6 hrs condition and $NH_4{^+}$-N removal efficiency was also higher at 4 hrs with 89.2% than 65.4% of 6 hrs. However, the ratio of NOB was decreased when HRT was reduced from 6 hrs to 4 hrs and $NO_2{^-}$-N accumulation was observed at 4 hrs condition. Therefore, it is considered that insufficient HRT condition could supply sufficient substrate and enrichment of AOB in all depth of fixed biofilm but cause decrease of NOB and nitrite accumulation.

Isolation, identification and immobilized-cell characteristics of a bacterium that produces $N_2$ from $NH{_4}{^+}$ under an aerobic condition

  • Park, Kyoung-Joo;Cho, Kyoung-Sook;Kim, Jeong-Bo;Lee, Min-Gyu;Lee, Byung-Hun;Hong, Young-Ki;Kim, Joong-Kyun
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.450-455
    • /
    • 2005
  • To treat wastewater efficiently by a one-step process of nitrogen removal, a new strain of $N_2-producing$ bacteria from $NH{_4}{^+}$ under an aerobic condition was isolated and identified. By 16S-rDNA analysis, the isolate was identified as Enterobacter asburiae with 96% similarity. The isolate shows that the capacity of $N_2$ production under an oxic condition was approximately three times higher than that under an anoxic condition. The optimal conditions (pH, temperature and C/N ratio) of the immobilized isolate for $N_2$ production were found to be 7.0, $30^{\circ}C$ and 5, respectively. Under all the optimum reaction conditions, the removal efficiency of $COD_{Cr}$ and TN reached 56.1 and 60.9%, respectively. The removal rates of $COD_{Cr}$ and TN were highest for the first 2.5 hrs (with the removal $COD_{Cr}$ ratios of 32.1), and afterwards the rates decreased as reaction proceeded. For application of the immobilized isolate to a practical process of ammonium removal, a continuous bioreactor system exhibited a satisfactory performance at HRT of 12.1 hr, in which the effluent concentrations of $NH{_4}{^+}-N$ was measured to be 15.4 mg/L with its removal efficiency of 56.0%. The maximum removal rate of $NH{_4}{^+}-N$ reached 1.6 mg $NH{_4}{^+}-N/L/hr$ at HRT of 12.1 hr (with N loading rate of 0.08 $Kg-N/m^3-carrier/d)$. As a result, the application of the immobilized isolate appears a viable alternative to the nitrification-denitrification processes.

  • PDF

Oxygen Fluctuation Monitored with High Frequency in a Eutrophic Urban Stream (the Anyang Stream) and the Effect of Weather Condition (부영양 도심하천(안양천)에서 고빈도 관측에 의한 산소고갈과 기상조건의 영향 연구)

  • Kim, Sun-Jung;Shin, Myoung-Sun;Kim, Jai-Ku;Lee, Jae-Yong;Jeong, Karp-Joo;Ahn, Bu-Young;Kim, Bom-Chul
    • Korean Journal of Ecology and Environment
    • /
    • v.45 no.1
    • /
    • pp.34-41
    • /
    • 2012
  • The variation of dissolved oxygen (DO) was monitored with high frequency by an automatic data-logging sensor in a eutrophic urban stream (the Anyang Stream) located in a metropolitan area of Seoul, South Korea. In general, DO showed the diel variation of increase in daytime and decrease at night, implying that primary production is a major mechanism of oxygen supply in this ecosystem. The fluctuation of oxygen was determined by rainfall. DO depletion was most obvious after a rainfall resulting in an anoxic condition for a day, which is thought to be caused by scouring of periphyton and organic ooze at the stream bottom. Seasonally DO was higher in winter and frequently depleted in warm seasons. DO depletion was often at a dangerous level for fish survival. Fish survey showed that little fish was living at the study site and oxygen depletion may be the major stress factor for aquatic animals. From the results it can be suggested that a high frequency monitoring of oxygen should be established for the proper assessment of aquatic habitats and better management strategy.

Seasonal Distribution of Zooplankton Communities in Inchon Dock, an Artificially Closed Marine Embayment Facing the Yellow Sea, Western Korea (인천항 선거내 동물플랑크톤 군집의 계절 변동)

  • KIM, SE-WHA;LEE, JIN HWAN
    • 한국해양학회지
    • /
    • v.29 no.4
    • /
    • pp.376-382
    • /
    • 1994
  • Seasonal distribution of zooplankton community in Inchon Dock, an artificially closed marine embayment has been studied. Samples were collected monthly during the period from December 1989 to December 1991 at four stations in the dock and compared with that at a single station in neighbouring waters of the Yellow Sea. Copepods dominated both in and outside of the dock all the year round, except in late autumn and early winter when protozoans outnumbered. dominant species were Oithona davisae, Acartia bifilosa, Paracalanus crassirostris, Noctiluca scintillas and Tintinnopsis tubulosa. A sharp decline in the abundance was observed in summer 1990 in the dock apparently due to oxygen deficiency (anoxic condition). Although no distinct deference in the abundance of zooplankton was observed between populations in and outside of the dock except in summer 1990, waters out of the dock showed to have a prosperity in species number throughout the year. Moreover, four species of copepods, Centropages abdominalis, Pseudodiaptomus marinus, Tortanus forcipatus and T. spinicaudatus occurred solely at the outside of the dock.

  • PDF

Sedimentary Environments and Heavy Metallic Pollution at Shihwa Lake (시화호의 퇴적환경과 중금속오염)

  • Hyun, Sang-Min;Chun, Jong-Hwa;Yi, Hi-Il
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.4 no.3
    • /
    • pp.198-207
    • /
    • 1999
  • Five core sediments acquired from the Lake Shihwa are analyzed for variations of sedimentary environment and heavy metal pollution after the Shihwa seawall construction. The depositional environment of the study area is divided into anoxic, oxic and mixed suboxic conditions based on the C/N ratio and C/S ratios of organic matters. Controlling factors for redox condition are the water depth and the difference in industrial effluents supply. Correlations among geochemical elements (Mn, U, Mo) show a distinctive difference and thus can be used as an indicator of redox condition. The content of Al, Ti are dependent on the sediment characteristics, and the contents of heavy metals (Cr, Ni, Cu, Zn, and Pb) indicate heavy metal pollution. The concentrations of heavy metals are higher near Shiswa-Banwol industrial complexies than the central part of Lake Shihwa. Especially, the accumulation of the heavy metal at the surface sediments near Shihwa-Banwol industrial complex are two to eight times higher than in the center of Lake Shihwa.

  • PDF

Spatial and Temporal Variations of Foraminifers as an Indicator of marine Pollution

  • Shin, Im-Chul;Yi, Hi-Il
    • International Union of Geodesy and Geophysics Korean Journal of Geophysical Research
    • /
    • v.26 no.1
    • /
    • pp.59-73
    • /
    • 1998
  • Sediment samples from five stations at the Shihwa Lake sewage outfall, west cost of Korea, were collected to evaluate the effect of the outfall on benthic foraminifers. Heavy metal (Cu and Zn) polluted the eastern part of the Shihwa Lake, adjacent to the Shihwa-Banwol Industrial Complexes, shows barren or nearly barren of benthic foraminifers, and the lowest number of species both at the core top and downcore. Excepting for the barren zone, pyritized benthic foraminifers abundantly occur both at the surface and downcore sediments in the western part of the Shihwa Lake, suggesting that foraminiferal disease by anoxic bacteria. Recent intrusion of pollutants form the Shihwa-Banwol Industrial Complexes and adjacent six major streams severely polluted the Shihwa Lake as shown by the low abundance (number/10 g) of benthic foraminifers, low number of Ammonia beccarii, low species diversity, and absence of both Elphidium spp. and ostracodes at the surface sediments compared of both downcore. Except the barren zone, both pyritized and non-pyritized Ammonia beccarii occur dominantly in the surface sediments and downcore. Elphidium spp. (either pyritized or non-phyritized) do not occur in the surface sediments of whole stations. However, they occur from the entire downcore sediments except in the eastern part of Shihwa Lake. Arenaceous foraminifers do not inhabit in the heavily polluted areas as evidenced by the occurrence of relatively deep core depth (11-15 cm). Ostracodes occur at the downcore sediments, but they do not occur at the surface sediments. Ostracodes also do not occur at the heavily polluted areas in the eastern part of the Shihwa Lake both at the surface and downcore sediments, indicating that the abundance of ostracodes also can be used for a pollution indicator.

  • PDF

Treatability Evaluation of $A_{2}O$ System by Principal Component Analysis (주성분분석에 의한 $A_{2}O$공법의 처리성 평가)

  • 김복현;이재형;이수환;윤조희
    • Journal of Environmental Health Sciences
    • /
    • v.18 no.2
    • /
    • pp.67-74
    • /
    • 1992
  • The lab-scale biological A$_{2}$O system was applied from treating piggery wastewater highly polluted organic material which nitrogen and phosphorous are much contained relatively in conversion with other wastewater. The objective of this study was to investigate the effect of variance parameters on the treatability of this system according to operation conditions. An obtained experimental data were analysed by using principal component analysis (PCA) method. The results are summarized as follows: 1. From Varimax rotated factor loading in raw wastewater, variance of factor 1 was 36.8% and cumulative percentage of variance from factor 1 to factor 4 was 81.5% and of these was related to BOD, TKN and BOD loading. 2. In anaerobic process, variance of factor 1 was 33.5% and cumulative percentage of variance from factor I to factor 4 was 81.8% and of these was related to PO$_{4}$-P, BOD, DO and Temperature. 3. In anoxic process, variance of factor 1 was 30.1% and cumulative percentage of variance from factor i to factor 4 was 84.3% and of these was related to pH, DO, TKN and temperature. 4. In aerobic process, variance of factor 1 was 43.8% and cumulative percentage of variance from factor 1 to factor 4 was 81.5% and of these was highly related to DO, PO$_{4}$-P and BOD. 5. It was better to be operated below 0.30 kg/kg$\cdot$day F/M ratio to keep over 90% of BOD and SS, 80% of TKN, and 60% of PO$_{4}$-P in treatment efficiencies. 6. Treatment efficiencies was over 93% of BOD and SS, 81% of TKN and 60% of PO$_{4}$-P at over 20$^{\circ}$C, respectively.

  • PDF

Change of Heavy Metals in the Surface Sediments of the Lake Shihwa and Its Tributaries (시화호 및 주변 하천 표층 퇴적물의 중금속 분포 변화)

  • Kim, Kyung-Tae;Kim, Eun-Soo;Cho, Sung-Rok;Park, Jun-Kun;Park, Chung-Kil
    • Ocean and Polar Research
    • /
    • v.25 no.4
    • /
    • pp.447-457
    • /
    • 2003
  • In order to understand the distribution of changes of geochemical characteristics in surface sediments according to various environmental changes around the artificial Lake Shihwa, surface sediments were sampled at $13{\sim}15$ sites form 1997 to 1999 and analyzed by C/S analyzer, ICP/MS and AAS. The average $S/C_{org}$ ratio was 0.35 in the surface sediments, which is similar to 0.36, the characteristic ratio of marine sediments. Heavy metal contents and enrichment factors in the surface sediments tended to be decreasing from the head to the mouth of the Lake Shihwa. With the deposition of fine-grained sediments in the central part of lake, anoxic water column induced the sulfides compounds with Cu, Cd and Zn. Metals such as Al, Fe, Cr, Co, Ni, Cu, Zn and Cd except for Mn and Pb showed relatively high correlation coefficients among them. The contents of Cr, Co, Ni, Cu, Zn and Cd in the surface sediments of the lake were two to five times higher than those in the lake before dike construction and also in outer part of the dike. These are mainly due to the Input of untreated industrial and municipal waste-waters into the lake, and the accumulation of heavy metals by limitation of physical mixing. Although metal contents of the surface sediments at the sites near the water-gate due to outer seawater inflow tended to be lower than those during the desalination, heavy metals were deposited in areas around the new industrial complex in the evidence of spatial distribution of heavy metals in the sediments. This is mainly due to the input of untreated waste-waters from tributaries.

The Effect of Filling Step on the Removal Efficiency and Filtration Performance in the Operation of Submerged Membrane-Coupled Sequencing Batch Reactor (침지형 막결합 연속회분식 반응기의 운전에서 폐수의 도입단계가 제거효율과 여과성능에 미치는 영향)

  • Kim, Seung-Geon;Lee, Ho-Won;Kang, Yeung-Joo
    • Membrane Journal
    • /
    • v.21 no.3
    • /
    • pp.263-269
    • /
    • 2011
  • In the operation of submerged membrane-coupled sequencing batch reactor, the effect of filling step on the removal efficiency and filtration performance were investigated. Two sets of operation modes, the filling step located in the beginning of aerobic step (Mode-1) and the beginning of anoxic step (Mode-2), during 89 days were conducted. There was no wide difference in the COD removal and filtration performance between two sets of operation modes. But in the removal efficiency of nutrients (total nitrogen and total phosphorous), Mode-2 was more effective than Mode-1. In the case of Mode-2, average removal efficiencies of COD, total nitrogen, and total phosphorous were 99.1, 73.3, and 77.3%, respectively.