• Title/Summary/Keyword: Anoxic

Search Result 443, Processing Time 0.03 seconds

Adaptive Control of Denitrification by the Extended Kalman Filter in a Sequencing Batch Reactor (확장형칼만필터에 의한 연속회분식반응조의 탈질 적응제어)

  • Kim, Dong Han
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.6
    • /
    • pp.829-836
    • /
    • 2006
  • The reaction rate of denitrification is primarily affected by the utilization of organics that are usually limited in the anoxic period in a sequencing batch reactor. It is necessary to add an extemal carbon source for sufficient denitrification. An adaptive model of state-space based on the extended Kalman filter is applied to manipulate the dosage rate of extemal carbon automatically. Control strategies for denitrification have been studied to improve control performance through simulations. The normal control strategy of the constant set-point results in the overdosage of external carbon and deterioration of water quality. To prevent the overdosage of external carbon, improved control strategies such as the constrained control action, variable set-point, and variable set-point after dissolved oxygen depletion are required. More stable control is obtained through the application of the variable set-point after dissolved oxygen depletion. The converging value of the estimated denitrification coefficient reflects conditions in the reactor.

Nitrogen Removal and Behavior of Soluble Microbial Products (SMP) in the MBR Process with Intermittent Aerobic Condition

  • Cha, Gi-Cheol;Myoung Hwang
    • Korean Membrane Journal
    • /
    • v.3 no.1
    • /
    • pp.1-8
    • /
    • 2001
  • A lab-scale submerged membrane bio-reactor (MBR) with intermittent aeration was carried out for investigating the behavior of soluble microbial products (SMP). The SMP concentration of mixed liquor at Run 1 accumulated immediately at the end of running and biodegradable SMP converted into non-biodegradable SMP, but it did not occurred at the Run 2 and 3. The SMP formation coefficient (k) at the anoxic phase was a little higher than oxic phase, and the lowest k was investigated at Run 3. The combination of biological denitrification with the MBR Process was advantageous in the prevention of membrane bio-fouling.

  • PDF

Investigation of the Condition of the Operation of the Livestock Liquid Manure Bin and Assessment of Malodorant Emissions (축분뇨 액비 저장조의 운영실태 및 악취 물질 발생량 조사)

  • Kim T. I.;Song J. I.;Joung S.;Jeong J. W.;Chung E. S.;Barroga A. J.;Yoo Y. H.;Yang C. B.;Kim M. K.
    • Journal of Animal Environmental Science
    • /
    • v.11 no.3
    • /
    • pp.189-196
    • /
    • 2005
  • This study was carried out to determine the acceptability of liquid manure bin among livestock farmers and agricultural farmers, and quantify its malodorous compounds. The results were as follows; 1. The size of the manure bins owned by $93\%$ of 60 farmers surveyed was 200 M/T and were all in normal operation. Around $57\%$ of the normally operated bins were processed under aerobic condition. 2. Filly percent of the respondents utilized their liquid manure bin twice a year while $64\%$ used commercial microbial products to enhance maturity of their liquid manure and abatement of malodorous emissions. On the other hand, $43\%$ mentioned problems on the labor requirement, mechanical maintenance and lending cost of liquid manure processing and utilization, and the price of the commercial microbial products. 3. Malodorants emitted from livestock liquid manure bins and their boundary bin depended upon the livestock liquid manure processing condition. Within bin under the aerobic processing condition, Iso-valeric and propionic acid were ranged 0.012 to 0.07ppm and 0.17 to 2.85ppm, respectively. Within bin under the anoxic processing condition, n-butyric, n-valeric acid, and acetaldehyde were ranged 1.5 to 2.3ppm, 1.3 to 1.8ppm, and 0.8 to 2.1ppm, respectively. Malodorants emitted from the boundary of livestock liquid manure bins under the anoxic processing condition were detected the range of 0.4 to 0.9 ppm, more than the concentration of law regulation, as an acetaldehyde, but under the aerobic processing condition, they did not any detection.

  • PDF

Evaluating the Removal Efficiency of Organic Compounds and Nitrogen Depending on Loading Rate in Wastewater Treatment from Fisheries Processing Plant Using an Entrapped Mixed Microbial Cell Technique (미생물 강제포획기술을 이용한 수산물 가공공장 폐수처리에서 부하율에 따른 유기물 및 질소의 제거 효율성 평가)

  • Jeong Byung-Cheol;Chang Soo-Hyun;Jeong Byung-Gon
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.9 no.1
    • /
    • pp.14-20
    • /
    • 2006
  • In this study, the feasibility of simultaneous removal of organic materials and nitrogen in the waste-water from fisheries processing plant was evaluated using entrapped mixed microbial cell technique(EMMC) process. The experiment was performed using activated sludge from municipal sewage treatment plant which was immobilized with gel matrix by cellulose triacetate. It was found that the stable operation at the treatment system which is composed of anoxic and oxic tank, was possible when the organic and nitrogen loading rates were increased stepwise. The organic and nitrogen loading rates were applied from 0.65 to $1.72kgCOD/m^3/d$ and from 0.119 to $0.317kgT-N/m^3$ with four steps, respectively. The maximum nitrogen loading rate which could satisfy the regulated effluent standard of nitrogen concentration, was $0.3kgT-N/m^3/d$. The removal efficiency of total nitrogen was decreased apparently as increasing nitrogen loading rates, whereas the removal efficiency of ammonium nitrogen was effective at the all tested nitrogen loading rates. Therefore, it was concluded that nitrification was efficient at the system. Nitrate removal efficiency ranged from 98.62% to 99.51%, whereas the nitrification efficiency at the oxic tank ranged 94.0% to 96.9% at the tested loading rates. The removal efficiencies of chemical oxygen demand(COD) and those of total nitrogen at the entire system ranged from 94.2% to 96.6% and 73.4% to 83.4%, respectively.

  • PDF

Development of New BNR Process Using Fixed-Biofilm to Retrofit the Existing Sewage Treatment Plant (고정생물막을 이용한 기존 하수처리장의 생물학적 영양염 제커 신공정개발)

  • Kim, Mi-Hwa;Lee, Ji-Hyung;Chun, Yang-Kun;Park, Tae-Joo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.6
    • /
    • pp.1093-1101
    • /
    • 2000
  • The object of this study was to develop new BNR process using fixed-biofilm which could be applied to retrofit the existing wastewater treatment plant or to introduce as tertiary treatment plant. To achieve complete denitrification from typical raw sewage in Korea, external carbon source must be supplied because $SCOD_{cr}/T-N(NH_4{^+}-N+NOx-N)$of raw sewage was lower than other countries. In this study, the ratio of $SCOD_{cr}/NH_4{^+}-N$ was 2.49 and the influent $NH_4{^+}$-N concentration during the experimental period was varied from 25 to 37 mg/L. To enhance nitrogen removal from the sewage, the two processes using fixed biofilm were adopted as R-Hanoxic/mid.settler/aerobic/anoxic/ aerobic) and R-2(aerobic/mid.settlerlanoxic/anoxic/aerobic), respectively. In the comparison of $NH_4{^+}$-N, T-N effluent quality and T-N removal efficiency in both processes without external carbon source, R-1 process was better than R-2 process for nitrogen removal from raw sewage. With respect to $SCOD_{cr}$/NOx-N ratio and total nitrogen removal in each anoxic reactor of two processes, R-1's was more effective than R-2's for distributing organic matters of raw sewage. In the both processes using fixed biofilm, the amount of required alkalinity to remove unit $NH_4{^+}$-N were 5.18 and 5.76($g{\cdot}CaCO_3/g{\cdot}NH_4{^+}-N_{removed}$), respectively and were lower than activated sludge BNR process(7.14).

  • PDF

Analysis of Nitrogen and Phosphorus Benthic Diffusive Fluxes from Sediments with Different Levels of Salinity (염분농도에 따른 호소 퇴적물 내 질소 및 인 용출 특성 분석)

  • Seulgi Lee;Jin Chul Joo;Hee Sun Moon;Dong Hwi Lee;Dong Jun Kim;Jiwon Choi
    • Ecology and Resilient Infrastructure
    • /
    • v.10 no.3
    • /
    • pp.85-96
    • /
    • 2023
  • The study involved the categorization of domestic lakes located in South Korea into three groups based on their salinity levels: upstream reservoirs with salinity less than 0.3 psu, estuarine reservoirs with salinity ranging from 0.3 to 2 psu, and brackish lagoons with salinity exceeding 2 psu. Subsequently, the research assessed variations in the concentrations of total nitrogen (T-N) and total phosphorus (T-P) in the sediment of these lakes using statistical analysis, specifically one-way analysis of variance (ANOVA). Additionally, a laboratory core incubation test was conducted to investigate the benthic nutrient fluxes in Songji lagoon (salinity: 11.80 psu), Ganwol reservoir (salinity: 0.73 psu), and Janggun reservoir (salinity: 0.08 psu) under both aerobic and anoxic conditions. The findings revealed statistically significant differences in the concentrations of T-N and T-P among sediments in the lakes with varying salinity levels (p<0.05). Further post-hoc analysis confirmed significant distinctions in T-N between upstream reservoirs and estuarine reservoirs (p<0.001), as well as between upstream reservoirs and brackish lagoons (p<0.01). For T-P, a significant difference was observed between upstream reservoirs and brackish lagoons (p<0.01). Regarding benthic nutrient fluxes, Ganwol Lake exhibited the highest diffusive flux of NH4+-N, primarily due to its physical characteristics and the inhibition of nitrification resulting from its relatively high salinity. The flux of NO3--N was lower at higher salinity levels under aerobic conditions but increased under anoxic conditions, attributed to the impact of salinity on nitrification and denitrification. Additionally, the flux of PO43--P was highest in Songji Lake, followed by Ganwol Lake and Janggun Reservoir, indicating that salinity promotes the diffusive flux of phosphate through anion adsorption competition. It's important to consider the influence of salinity on microbial communities, growth rates, oxidation-reduction processes, and nutrient binding forms when studying benthic diffusive nutrient fluxes from lake sediments.

The effect of geochemical characteristics and environmental factors on the growth of cultured Arkshell Scapharca broughtonii at several shellfish-farming bays on the South coast of Korea (남해 연안 피조개 (Scapharca broughtonii) 양식장의 환경특성)

  • Choi, Yoon Seok;Jung, Choon-Goo
    • The Korean Journal of Malacology
    • /
    • v.32 no.3
    • /
    • pp.149-155
    • /
    • 2016
  • To assess the effects of environmental factors on the sustainability of cultured ark shell Scapharca broughtonii production, we investigated the habitat characteristics of shellfish-farming bays (Gangjin Bay, Yeoja Bay, Keoje Bay and Deukryang Bay). We measured the physiochemical parameters (temperature, salinity, dissolved oxygen, nutrients, chemical oxygen demand and Chlorophyll a) and the geochemical characteristics (chemical oxygen demand, ignition loss, C/N ratio and C/S ratio). Surface sediments were collected from several shellfish-farming bays to examine the geochemical characteristics of both the benthic environment and heavy metal pollution. The grain sizes for Gangjin Bay, Yeoja Bay and Keoje Bay were similar, at the ratio of silt and clay in comparison with Deukryang bay of it. The C/N ratio was more than 5.9, reflecting the range arising from the mix of marine organisms and organic matter. The C/S ratio (more than 4.2) showed that the survey area had anoxic or sub-anoxic bottom conditions. The index of accumulation rate (Igeo) of the metals showed that those research areas can be classified as heavily polluted, heavily to moderately polluted, or more or less unpolluted, respectively. We suggested that the growth of ark shell Scapharca broughtonii in the shellfish-farming bay was effected by the various environmental conditions.

The Bacterial Community Structure in Biofilms of the RABC Process for Swine Butchery Wastewater Treatment (돼지 도축폐수 처리를 위한 RABC 공정의 생물막 세균군집 구조)

  • Sung, Gi-Moon;Lee, Dong-Geun;Park, Seong-Joo
    • Korean Journal of Microbiology
    • /
    • v.47 no.1
    • /
    • pp.56-65
    • /
    • 2011
  • Culture-independent microscopic observations and 16S rDNA analyses were applied to describe the bacterial community inherent to the biofilm structure of the RABC (Rotating Activated Bacillus Contactors) process for swine butchery wastewater treatment. The ratios of Gram-positive bacterial counts to total bacterial counts of the RABC process were significantly increased in the last aeration tank as well as returned sludge, while those of the existing A2O (Anaerobic-Anoxic-Oxic) process maintained constant from aeration tanks to returned sludge. Totally nine phyla were recovered by 16S rDNA analysis, two of which were major groups: the Proteobacteria (64.1%) and the Actinobacteria (18.4%). The third major group was the endospore-forming Firmicutes (5.4%). The remaining six minor groups are the Bacteroidetes (3.3%), the Chlorobi (2.2%), the Nitrospirae (1.1%), the Chlorofleix (1.1%), the Acidobacteria (1.1%), and the Fusobacteria (1.1%). The ratio of endospore-forming bacteria was 19.4%, which was composed of the members of the Firmicutes phylum (5.4%) and the Intrasporangiaceae family (14.0%) of the Actinobacteria phylum. Nitrifying and denitrifying related- and phosphorus accumulating related-sequences were composed of 6.5% and 5.4% of total community, respectively, these could mean the high capacity of the RABC process to remove odor compounds and reduce eutrophication by efficient removing inorganic nutrients.

Effects of MK-801, CNQX, Cycloheximide and BAPTA-AM on Anoxic Injury of Hippocampal Organotypic Slice Culture (해마 조직 절편 배양을 이용한 무산소 손상에 대한 MK-801, CNQX, Cycloheximide 및 BAPTA-AM의 효과)

  • Moon, Soo-Hyeon;Kwon, Taek-Hyon;Park, Youn-Kwan;Chung, Heung-Seob;Suh, Jung Keun
    • Journal of Korean Neurosurgical Society
    • /
    • v.29 no.8
    • /
    • pp.1008-1018
    • /
    • 2000
  • Objective : Glutamate induced excitotoxicity is one of the leading causes of cell death under pathologic condition. However, there is controversy whether excitotoxicity may also participate in the neuronal death under low intensity insult such as simple hypoxia or hypoglycemia. To investigate the role of NMDA receptor in low intensity insult, we chose anoxia as the method of injury and used organotypically cultured hippocampal slice as the material of experiment. Materials & Methods : The hippocampal slices cultured for 2-3 weeks were exposed to 60 minutes of complete oxygen deprivation(anoxia). Neuronal death was assessed with Sytox stain. Corrected optical density of fluorescence in gray scale, used as cellular death indicator, was obtained from pictures taken at 24 and 48 hours following the insult. The well-known in vivo phenomenon of regional difference in susceptibility of hippocampal sub-fields to ischemic insult was reproduced in HOSC(hippocampal organotypic slice culture) by complete oxygen deprivation injury. Results : $CA_1$ was the most vulnerable to complete oxygen deprivation in hippocampus while $CA_3$ was resistant. Oxygen deprivation for 10 and 20 minutes with glucose(6.5g/l) present was insufficient to induce neuronal death in the cultured hippocampal slice. However, after 30 minutes exposure under anoxic condition, neuronal death was able to be detected in the center of $CA_1$ area. The intensity and area of fluorescence indicating cell death correlated with the duration of oxygen deprivation. NMDA receptor and non-NMDA receptor blocking with MK-801(30 & $60{\mu}M$) and CNQX($100{\mu}M$) did not provide cellular protection to HOSC against damage induced by oxygen deprivation, but increased intracellular calcium buffering capacity with BAPTA-AM($10{\mu}M$) was effective in preventing neuronal death (p=0.01, Student's t-test). Cycloheximide($1{\mu}g/ml$, $10{\mu}g/ml$) provided no protection to HOSC against insult of complete oxygen deprivation for 60 minutes and combined therapy of MK-801(30 & $60{\mu}M$) and cycloheximide(1 & $10{\mu}g/ml$) was also ineffective in preventing neuronal death. Conclusion : The results of this study show that the another mechanism not associated with glutamate receptor(NMDA & non NMDA) may play major role in cell death mechanisms induced by complete oxygen deprivation and increased intracellular calcium during anoxia may participate in the neuronal death mechanism of oxygen deprivation. Further investigation of the calcium entry channel activated during oxygen deprivation is necessary to understand the neuronal death of anoxia.

  • PDF

Removal Behavior of Biological Nitrogen and Phosphorus and Prediction of Microbial Community Composition with Its Function, in an Anaerobic-Anoxic System form Weak Sewage

  • LEE, JIN WOO;EUI SO CHOI;KYUNG IK GIL;HAN WOONG LEE;SANG HYON LEE;SOO YOOUN LEE;YONG KEUN PARK
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.6
    • /
    • pp.994-1001
    • /
    • 2001
  • An easier way of understanding the BNR system was proposed from the study on substrate, nutrient removal tendency, microbial community and its metabolic function by applying the municipal settled sewage. During the anaerobic period, the phosphorus release rate per VFACOD we varied depending on the phosphorus content in the sludge. When the phosphorus content in the sludge was $6\%$ VSS, according to influent VFACOD, the phosphorus release rate and PHA production were $0.35 gPO_4P/gVFACOD$ and 1.0 gPHA/gVFACOD, respectively. The $NO_3N$ requirement for the phosphorus uptake as an electron acceptor was about $0.5 gNO_3N/gPO_4P_{uptake}$ based on the proposed equation with PHA, biomass, production, and the concentration of phosphorus release/uptake. Bacterial-community analysis of the sludge, as determined by FISH and 16SrDNA characterization FISH, revealed that the beta-subclass proteobacteria were the most abundant group ($27.9\%$ of the proteobacteria-specific probe EUB338), and it was likely that representative of the beta-subclass played key roles in activated sludge. The next dominant group found was the gamma-protebacteria ($15.4\%$ of probe EUB338). 16S rDNA clone library analysis showed that the members of${\beta}$- and ${\gamma}$-proteobacteria were also the most abundant groups, and $21.5\%$ (PN2 and PN4) and $15.4\%$ (PN1 and PN5) of total clones were the genera of denitrifying bacteria and PAO, respectively. Prediction of the microbial community composition was made with phosphorus content (Pv, $\%$ P/VSS) in wasted sludge and profiles of COD, PHA, $PO_4P,\;and\;NO_3N$ in an anaerobic-anoxic SBR unit. Generally, the predicted microbial composition based upon metabolic function, i.e., as measured by stoichiometry, is fairly similar to that measure by the unculturable dependent method. In this study, a proposal was made on he microbial community composition that was more easily approached to analyze the reactor behavior.

  • PDF