• 제목/요약/키워드: Anomaly data detection

검색결과 402건 처리시간 0.025초

사이버 공격에 의한 시스템 이상상태 탐지 기법 (Detection of System Abnormal State by Cyber Attack)

  • 윤여정;정유진
    • 정보보호학회논문지
    • /
    • 제29권5호
    • /
    • pp.1027-1037
    • /
    • 2019
  • 기존의 사이버 공격 탐지 솔루션은 일반적으로 시그니처 기반 내지 악성행위 분석을 통한 방식의 탐지를 수행하므로, 알려지지 않은 방식에 의한 공격은 탐지하기 어렵다는 한계가 있다. 시스템에서는 상시로 발생하는 다양한 정보들이 시스템의 상태를 반영하고 있으므로, 이들 정보를 수집하여 정상상태를 학습하고 이상상태를 탐지하는 방식으로 알려지지 않은 공격을 탐지할 수 있다. 본 논문은 정상상태 학습 및 탐지에 활용하기 위하여 문자열을 그 순서와 의미를 보존하며 정량적 수치로 변환하는 머신러닝 임베딩(Embedding) 기법과 이상상태의 탐지를 위하여 다수의 정상데이터에서 소수의 비정상 데이터를 탐지하는 머신러닝 이상치 탐지(Novelty Detection) 기법을 이용하여 사이버 공격에 의한 시스템 이상상태를 탐지하는 방안을 제안한다.

A data corruption detection scheme based on ciphertexts in cloud environment

  • Guo, Sixu;He, Shen;Su, Li;Zhang, Xinyue;Geng, Huizheng;Sun, Yang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권9호
    • /
    • pp.3384-3400
    • /
    • 2021
  • With the advent of the data era, people pay much more attention to data corruption. Aiming at the problem that the majority of existing schemes do not support corruption detection of ciphertext data stored in cloud environment, this paper proposes a data corruption detection scheme based on ciphertexts in cloud environment (DCDC). The scheme is based on the anomaly detection method of Gaussian model. Combined with related statistics knowledge and cryptography knowledge, the encrypted detection index for data corruption and corruption detection threshold for each type of data are constructed in the scheme according to the data labels; moreover, the detection token for data corruption is generated for the data to be detected according to the data labels, and the corruption detection of ciphertext data in cloud storage is realized through corresponding tokens. Security analysis shows that the algorithms in the scheme are semantically secure. Efficiency analysis and simulation results reveal that the scheme shows low computational cost and good application prospect.

차량 센서 데이터 조합을 통한 딥러닝 기반 차량 이상탐지 (Deep Learning-Based Vehicle Anomaly Detection by Combining Vehicle Sensor Data)

  • 김송희;김선혜;윤병운
    • 한국산학기술학회논문지
    • /
    • 제22권3호
    • /
    • pp.20-29
    • /
    • 2021
  • 4차산업혁명 시대에는 대량의 데이터를 학습하여 예측과 분류의 정확성을 향상시킬 수 있는 인공지능의 활용이 핵심적이다. 그러나, 기존 이상탐지를 위한 방법은 제한된 데이터를 다루는 전통적인 통계 방법에 의존하고 있어, 정확한 이상탐지가 어렵다. 그러므로, 본 연구는 인공지능 기반 이상탐지 방법을 제시하여 예측 정확도를 높이고, 새로운 데이터 패턴을 정의하는 것을 목적으로 한다. 특히, 자동차의 경우 공회전 기간의 센서 데이터가 이상 탐지에 활용될 수 있다는 관점에서 데이터를 수집하고 분석하였다. 이를 위해, 예측 모델에 입력되는 데이터의 적정 시간 길이를 결정하고, 공회전 기간 데이터와 전체 운행 데이터의 분석 결과를 비교하며, 다양한 센서 데이터 조합에 의한 최적 예측 방법을 도출하였다. 또한, 인공지능 방법으로 선택된 CNN의 예측 정확성을 검증하기 위해 LSTM 결과와 비교하였다. 분석 결과, 공회전 데이터를 이용하고, 공회전 기간보다 1.5배 많은 기간의 데이터를 이용하며 LSTM보다는 CNN을 활용하는 것이 더 좋은 예측결과를 보였다.

오토인코더 기반 IoT 디바이스 트래픽 이상징후 탐지 방법 연구 (Autoencoder-Based Anomaly Detection Method for IoT Device Traffics)

  • 박승아;장예진;김다슬;한미란
    • 정보보호학회논문지
    • /
    • 제34권2호
    • /
    • pp.281-288
    • /
    • 2024
  • 6세대(6G) 이동통신 기술은 초고속과 초대역, 그리고 초연결성을 중심으로 발전하고 있다. 통신 기술의 발전으로 사물 인터넷(IoT) 기술에서 만물 인터넷(IoE) 기술로 확장되며 초연결 사회의 형성이 급속화되고 있다. 하지만 그와 동시에 IoT 디바이스를 대상으로 하는 보안 위협이 광범위해지고 무단 액세스나 정보 유출 등 침해사고에 대한 우려가 커지며 보안 강화 솔루션의 필요성이 증가하고 있다. 이에 따라, 본 논문에서는 IoT 보안 위협에 대응하기 위해 실시간으로 수집한 네트워크 트래픽을 활용하여 오토인코더 기반의 이상징후 탐지 모델을 구현한다. 실제 IoT 환경에서 각종 공격에 대한 IoT 디바이스 트래픽 데이터를 수집하기 어려운 점을 고려하여 비지도 학습 기반의 오토인코더 신경망을 사용하며, 학습 데이터의 노이즈 적용과 잠재 공간의 차원에 따라 서로 다른 6가지 오토인코더 모델을 구현한다. 실험을 통해 모델 성능을 비교하여 비정상적인 네트워크 트래픽을 탐지하는 이상징후 탐지 모델에 대한 성능 평가를 제공한다.

권한이동 모델링을 통한 은닉 마르코프 모델 기반 침입탐지 시스템의 성능 향상 (Performance Improvement of Infusion Detection System based on Hidden Markov Model through Privilege Flows Modeling)

  • 박혁장;조성배
    • 한국정보과학회논문지:정보통신
    • /
    • 제29권6호
    • /
    • pp.674-684
    • /
    • 2002
  • 기존 침입탐지시스템에서는 구현의 용이성 때문에 오용침입탐지 기법이 주로 사용되었지만, 새로운 침입에 대처하기 위해서는 궁극적으로 비정상행위탐지 기법이 요구된다. 그 중 HMM기법은 생성메커니즘을 알 수 없는 이벤트들을 모델링하고 평가하는 도구로서 다른 침입탐지기법에 비해 침입탐지율이 높은 장점이 있다. 하지만 높은 성능에 비해 정상행위 모델링 시간이 오래 걸리는 단점이 있는데, 본 논문에는 실제 해킹에 사용되고 있는 다양한 침입패턴을 분석하여 권한이동시의 이벤트 추출방법을 이용한 모델링 기법을 제안하였고 이를 통하여 모델링 시간과 False-Positive 오류를 줄일 수 있는 지 평가해 보았다. 실험결과 전체 이벤트 모델링에 비해 탐지율이 증가하였고 시간 또한 단축됨을 알 수 있었다.

앙상블 모델 기반의 기계 고장 예측 방법 (An Ensemble Model for Machine Failure Prediction)

  • 천강민;양재경
    • 산업경영시스템학회지
    • /
    • 제43권1호
    • /
    • pp.123-131
    • /
    • 2020
  • There have been a lot of studies in the past for the method of predicting the failure of a machine, and recently, a lot of researches and applications have been generated to diagnose the physical condition of the machine and the parts and to calculate the remaining life through various methods. Survival models are also used to predict plant failures based on past anomaly cycles. In particular, special machine that reflect the fluid flow and process characteristics of chemical plants are connected to hundreds or thousands of sensors, so there are not many factors that need to be considered, such as process and material data as well as application of derivative variables. In this paper, the data were preprocessed through time series anomaly detection based on unsupervised learning to predict the abnormalities of these special machine. Next, clustering results reflecting clustering-based data characteristics were applied to produce additional variables, and a learning data set was created based on the history of past facility abnormalities. Finally, the prediction methodology based on the supervised learning algorithm was applied, and the model update was confirmed to improve the accuracy of the prediction of facility failure. Through this, it is expected to improve the efficiency of facility operation by flexibly replacing the maintenance time and parts supply and demand by predicting abnormalities of machine and extracting key factors.

기계학습을 활용한 IoT 플랫폼의 이상감지 시스템 (Anomaly Detection System of IoT Platform using Machine Learning)

  • 임선열;최효근;이규열;이태훈;유헌창
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2018년도 추계학술발표대회
    • /
    • pp.1001-1004
    • /
    • 2018
  • 많은 양의 데이터가 수집되는 산업분야에서의 IoT 플렛폼 활용도가 높아지면서 IoT플랫폼의 성능과 이상 감지가 중요한 요소가 되고 있다. 본 논문에서는 IoT 플랫폼의 데이터 수집 성능을 저해하지 않으면서 산업분야에 활용되는 디바이스의 이상을 감지하는 시스템을 제안한다. 제안한 시스템은 Soft Real-time 서비스를 제공하기 위해 데이터 전송주기를 고려한 Micro Batch를 활용했으며, 실험에는 산업분야의 이상 상황에 대한 자료수집이 사전에 이루어지기 어려운 상황을 고려해 Hotelling's $T^2$를 활용한 분석모델을 적용하였고 Hotelling's $T^2$는 이상징후를 사전에 감지하였다.

무선 센서 네트워크에서의 이상 징후 감지를 위한 공동 지수 평활법 및 추세 기반 주성분 분석 (Joint Exponential Smoothing and Trend-based Principal Component Analysis for Anomaly Detection in Wireless Sensor Networks)

  • ;양희규;;;김문성;추현승
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2019년도 추계학술발표대회
    • /
    • pp.145-148
    • /
    • 2019
  • Principal Component Analysis (PCA) is a powerful technique in data analysis and widely used to detect anomalies in Wireless Sensor Networks. However, the performance of conventional PCA is not high on time-series data collected by sensors. In this paper, we propose a Joint Exponential Smoothing and Trend-based Principal Component Analysis (JES-TBPCA) for Anomaly Detection which is based on conventional PCA. Experimental results on a real dataset show a remarkably higher performance of JES-TBPCA comparing to conventional PCA model in detection of stuck-at and offset anomalies.

FFT를 활용한 제조데이터 전처리 및 제품분류 (Manufacturing Data Preprocessing Method and Product Classification Method using FFT)

  • 김한솔;진교홍
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 추계학술대회
    • /
    • pp.82-84
    • /
    • 2021
  • 스마트 공장 구축사업을 통해 생산 설비로부터 전력, 진동, 압력, 온도 등의 센서 데이터가 수집되고 있으며 데이터 분석을 통해 예지보전, 불량예측, 이상탐지 등의 서비스 개발이 진행되고 있다. 일반적으로 제조데이터의 경우 정상과 비정상 데이터의 불균형이 극심하여 이상탐지 서비스가 선호되고 있다. 본 논문에서는 이상탐지 서비스 개발의 전단계로 제조데이터의 특징 데이터 추출을 위해 FFT 방법을 사용하였으며, 이를 통해 생산되는 제품을 분류해보고 그 결과를 확인하였다. 즉, 제품별 대표 패턴을 FFT 변환 후 상관계수를 계산하여 제품분류가 가능한지 확인하였다.

  • PDF

다중척도 모델의 결합을 이용한 효과적 인 침입탐지 ((Effective Intrusion Detection Integrating Multiple Measure Models))

  • 한상준;조성배
    • 한국정보과학회논문지:정보통신
    • /
    • 제30권3호
    • /
    • pp.397-406
    • /
    • 2003
  • 정보통신기술이 발전함에 따라 내부자의 불법적인 시스템 사용이나 외부 침입자에 의한 중요 정보의 유출 및 조작을 알아내는 침입탐지시스템에 대한 연구가 활발히 이루어지고 있다. 이제까지는 네트워크 패킷, 시스템 호출 감사자료 등의 척도에 은닉 마르코프 모델, 인공 신경망, 통계적 방법 등의 모델링 방법을 적용하는 연구가 이루어졌다. 그러나 사용하는 척도와 모델링 방법에 따라 취약점이 있어 탐지하지 못하는 침입이 많은데 이는 침입의 형태에 따라 흔적을 남기는 척도가 다르기 때문이다. 본 논문에서는 이러한 단일척도 침입탐지시스템의 단점을 보완하기 위해 시스템 호출, 프로세스의 자원점유율, 파일 접근이벤트 등의 세 가지 척도에 대하여 은닉 마르코프 모델, 통계적 방법, 규칙기반 방법을 사용하여 모델링한 후, 그 결과를 규칙기반 방법으로 결합하는 침입탐지 방법을 제안한다. 실험결과 다양한 침입 패턴에 대하여 다중척도 결합방법이 매우 낮은 false-positive 오류율을 보여 그 가능성을 확인할 수 있었다.