• Title/Summary/Keyword: Anomaly based Intrusion Detection System

Search Result 75, Processing Time 0.027 seconds

A hybrid intrusion detection system based on CBA and OCSVM for unknown threat detection (알려지지 않은 위협 탐지를 위한 CBA와 OCSVM 기반 하이브리드 침입 탐지 시스템)

  • Shin, Gun-Yoon;Kim, Dong-Wook;Yun, Jiyoung;Kim, Sang-Soo;Han, Myung-Mook
    • Journal of Internet Computing and Services
    • /
    • v.22 no.3
    • /
    • pp.27-35
    • /
    • 2021
  • With the development of the Internet, various IT technologies such as IoT, Cloud, etc. have been developed, and various systems have been built in countries and companies. Because these systems generate and share vast amounts of data, they needed a variety of systems that could detect threats to protect the critical data contained in the system, which has been actively studied to date. Typical techniques include anomaly detection and misuse detection, and these techniques detect threats that are known or exhibit behavior different from normal. However, as IT technology advances, so do technologies that threaten systems, and these methods of detection. Advanced Persistent Threat (APT) attacks national or companies systems to steal important information and perform attacks such as system down. These threats apply previously unknown malware and attack technologies. Therefore, in this paper, we propose a hybrid intrusion detection system that combines anomaly detection and misuse detection to detect unknown threats. Two detection techniques have been applied to enable the detection of known and unknown threats, and by applying machine learning, more accurate threat detection is possible. In misuse detection, we applied Classification based on Association Rule(CBA) to generate rules for known threats, and in anomaly detection, we used One-Class SVM(OCSVM) to detect unknown threats. Experiments show that unknown threat detection accuracy is about 94%, and we confirm that unknown threats can be detected.

Anomaly Intrusion Detection based on Association Rule Mining in a Database System (데이터베이스 시스템에서 연관 규칙 탐사 기법을 이용한 비정상 행위 탐지)

  • Park, Jeong-Ho;Oh, Sang-Hyun;Lee, Won-Suk
    • The KIPS Transactions:PartC
    • /
    • v.9C no.6
    • /
    • pp.831-840
    • /
    • 2002
  • Due to the advance of computer and communication technology, intrusions or crimes using a computer have been increased rapidly while tremendous information has been provided to users conveniently Specially, for the security of a database which stores important information such as the private information of a customer or the secret information of a company, several basic suity methods of a database management system itself or conventional misuse detection methods have been used. However, a problem caused by abusing the authority of an internal user such as the drain of secret information is more serious than the breakdown of a system by an external intruder. Therefore, in order to maintain the sorority of a database effectively, an anomaly defection technique is necessary. This paper proposes a method that generates the normal behavior profile of a user from the database log of the user based on an association mining method. For this purpose, the Information of a database log is structured by a semantically organized pattern tree. Consequently, an online transaction of a user is compared with the profile of the user, so that any anomaly can be effectively detected.

An Outlier Cluster Detection Technique for Real-time Network Intrusion Detection Systems (실시간 네트워크 침입탐지 시스템을 위한 아웃라이어 클러스터 검출 기법)

  • Chang, Jae-Young;Park, Jong-Myoung;Kim, Han-Joon
    • Journal of Internet Computing and Services
    • /
    • v.8 no.6
    • /
    • pp.43-53
    • /
    • 2007
  • Intrusion detection system(IDS) has recently evolved while combining signature-based detection approach with anomaly detection approach. Although signature-based IDS tools have been commonly used by utilizing machine learning algorithms, they only detect network intrusions with already known patterns, Ideal IDS tools should always keep the signature database of your detection system up-to-date. The system needs to generate the signatures to detect new possible attacks while monitoring and analyzing incoming network data. In this paper, we propose a new outlier cluster detection algorithm with density (or influence) function, Our method assumes that an outlier is a kind of cluster with similar instances instead of a single object in the context of network intrusion, Through extensive experiments using KDD 1999 Cup Intrusion Detection dataset. we show that the proposed method outperform the conventional outlier detection method using Euclidean distance function, specially when attacks occurs frequently.

  • PDF

DNS key technologies based on machine learning and network data mining

  • Xiaofei Liu;Xiang Zhang;Mostafa Habibi
    • Advances in concrete construction
    • /
    • v.17 no.2
    • /
    • pp.53-66
    • /
    • 2024
  • Domain Name Systems (DNS) provide critical performance in directing Internet traffic. It is a significant duty of DNS service providers to protect DNS servers from bandwidth attacks. Data mining techniques may identify different trends in detecting anomalies, but these approaches are insufficient to provide adequate methods for querying traffic data in significant network environments. The patterns can enable the providers of DNS services to find anomalies. Accordingly, this research has used a new approach to find the anomalies using the Neural Network (NN) because intrusion detection techniques or conventional rule-based anomaly are insufficient to detect general DNS anomalies using multi-enterprise network traffic data obtained from network traffic data (from different organizations). NN was developed, and its results were measured to determine the best performance in anomaly detection using DNS query data. Going through the R2 results, it was found that NN could satisfactorily perform the DNS anomaly detection process. Based on the results, the security weaknesses and problems related to unpredictable matters could be practically distinguished, and many could be avoided in advance. Based on the R2 results, the NN could perform remarkably well in general DNS anomaly detection processing in this study.

Implementation of Realtime Face Recognition System using Haar-Like Features and PCA in Mobile Environment (모바일 환경에서 Haar-Like Features와 PCA를 이용한 실시간 얼굴 인증 시스템)

  • Kim, Jung Chul;Heo, Bum Geun;Shin, Na Ra;Hong, Ki Cheon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.6 no.2
    • /
    • pp.199-207
    • /
    • 2010
  • Recently, large amount of information in IDS(Intrusion Detection System) can be un manageable and also be mixed with false prediction error. In this paper, we propose a data mining methodology for IDS, which contains uncertainty based on training process and post-processing analysis additionally. Our system is trained to classify the existing attack for misuse detection, to detect the new attack pattern for anomaly detection, and to define border patter between attack and normal pattern. In experimental results show that our approach improve the performance against existing attacks and new attacks, from 0.62 to 0.84 about 35%.

Anomaly behavior detection using Negative Selection algorithm based anomaly detector (Negative Selection 알고리즘 기반 이상탐지기를 이용한 이상행 위 탐지)

  • 김미선;서재현
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05b
    • /
    • pp.391-394
    • /
    • 2004
  • Change of paradigm of network attack technique was begun by fast extension of the latest Internet and new attack form is appearing. But, Most intrusion detection systems detect informed attack type because is doing based on misuse detection, and active correspondence is difficult in new attack. Therefore, to heighten detection rate for new attack pattern, visibilitys to apply human immunity mechanism are appearing. In this paper, we create self-file from normal behavior profile about network packet and embody self recognition algorithm to use self-nonself discrimination in the human immune system to detect anomaly behavior. Sense change because monitors self-file creating anomaly detector based on Negative Selection Algorithm that is self recognition algorithm's one and detects anomaly behavior. And we achieve simulation to use DARPA Network Dataset and verify effectiveness of algorithm through the anomaly detection rate.

  • PDF

Intrusion Detection System Based on Multi-Class SVM (다중 클래스 SVM기반의 침입탐지 시스템)

  • Lee Hansung;Song Jiyoung;Kim Eunyoung;Lee Chulho;Park Daihee
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.3
    • /
    • pp.282-288
    • /
    • 2005
  • In this paper, we propose a new intrusion detection model, which keeps advantages of existing misuse detection model and anomaly detection model and resolves their problems. This new intrusion detection system, named to MMIDS, was designed to satisfy all the following requirements : 1) Fast detection of new types of attack unknown to the system; 2) Provision of detail information about the detected types of attack; 3) cost-effective maintenance due to fast and efficient learning and update; 4) incrementality and scalability of system. The fast and efficient training and updating faculties of proposed novel multi-class SVM which is a core component of MMIDS provide cost-effective maintenance of intrusion detection system. According to the experimental results, our method can provide superior performance in separating similar patterns and detailed separation capability of MMIDS is relatively good.

Effective Intrusion Detection using Evolutionary Neural Networks (진화신경망을 이용한 효과적 인 침입탐지)

  • Han Sang-Jun;Cho Sung-Bae
    • Journal of KIISE:Information Networking
    • /
    • v.32 no.3
    • /
    • pp.301-309
    • /
    • 2005
  • Learning program's behavior using machine learning techniques based on system call audit data is an effective intrusion detection method. Rule teaming, neural network, statistical technique, and hidden Markov model are representative methods for intrusion detection. Among them neural networks are known for its good performance in teaming system call sequences. In order to apply it to real world problems successfully, it is important to determine their structure. However, finding appropriate structure requires very long time because there are no formal solutions for determining the structure of networks. In this paper, a novel intrusion detection technique using evolutionary neural networks is proposed. Evolutionary neural networks have the advantage that superior neural networks can be obtained in shorter time than the conventional neural networks because it leams the structure and weights of neural network simultaneously Experimental results against 1999 DARPA IDEVAL data confirm that evolutionary neural networks are effective for intrusion detection.

Comparison of Anomaly Detection Performance Based on GRU Model Applying Various Data Preprocessing Techniques and Data Oversampling (다양한 데이터 전처리 기법과 데이터 오버샘플링을 적용한 GRU 모델 기반 이상 탐지 성능 비교)

  • Yoo, Seung-Tae;Kim, Kangseok
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.2
    • /
    • pp.201-211
    • /
    • 2022
  • According to the recent change in the cybersecurity paradigm, research on anomaly detection methods using machine learning and deep learning techniques, which are AI implementation technologies, is increasing. In this study, a comparative study on data preprocessing techniques that can improve the anomaly detection performance of a GRU (Gated Recurrent Unit) neural network-based intrusion detection model using NGIDS-DS (Next Generation IDS Dataset), an open dataset, was conducted. In addition, in order to solve the class imbalance problem according to the ratio of normal data and attack data, the detection performance according to the oversampling ratio was compared and analyzed using the oversampling technique applied with DCGAN (Deep Convolutional Generative Adversarial Networks). As a result of the experiment, the method preprocessed using the Doc2Vec algorithm for system call feature and process execution path feature showed good performance, and in the case of oversampling performance, when DCGAN was used, improved detection performance was shown.

Flow-based Anomaly Detection Using Access Behavior Profiling and Time-sequenced Relation Mining

  • Liu, Weixin;Zheng, Kangfeng;Wu, Bin;Wu, Chunhua;Niu, Xinxin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.6
    • /
    • pp.2781-2800
    • /
    • 2016
  • Emerging attacks aim to access proprietary assets and steal data for business or political motives, such as Operation Aurora and Operation Shady RAT. Skilled Intruders would likely remove their traces on targeted hosts, but their network movements, which are continuously recorded by network devices, cannot be easily eliminated by themselves. However, without complete knowledge about both inbound/outbound and internal traffic, it is difficult for security team to unveil hidden traces of intruders. In this paper, we propose an autonomous anomaly detection system based on behavior profiling and relation mining. The single-hop access profiling model employ a novel linear grouping algorithm PSOLGA to create behavior profiles for each individual server application discovered automatically in historical flow analysis. Besides that, the double-hop access relation model utilizes in-memory graph to mine time-sequenced access relations between different server applications. Using the behavior profiles and relation rules, this approach is able to detect possible anomalies and violations in real-time detection. Finally, the experimental results demonstrate that the designed models are promising in terms of accuracy and computational efficiency.