• 제목/요약/키워드: Anomaly based Intrusion Detection System

검색결과 75건 처리시간 0.036초

SVM을 이용한 침입방지시스템 오경보 최소화 기법 (False Alarm Minimization Technology using SVM in Intrusion Prevention System)

  • 김길한;이형우
    • 인터넷정보학회논문지
    • /
    • 제7권3호
    • /
    • pp.119-132
    • /
    • 2006
  • 지금까지 잘 알려진 네트워크 기반 보안 기법들은 공격에 수동적이고 우회한 공격이 가능하다는 취약점을 가지고 있어 인라인(in_line) 모드의 공격에 능동적 대응이 가능한 오용탐지 기반의 침입방지시스템의 출현이 불가피하다. 하지만 오용탐지 기반의 침입방지시스템은 탐지 규칙에 비례하여 과도한 오경보(False Alarm)를 발생시켜 정상적인 네트워크 흐름을 방해하는 잘못된 대응으로 이어질 수 있어 기존 침입탐지시스템보다 더 위험한 문제점을 갖고 있으며, 새로운 변형 공격에 대한 탐지가 미흡하다는 단점이 있다. 본 논문에서는 이러한 문제를 보완하기 위해 오용탐지 기반의 침입방지시스템과 Anomaly System 중의 하나인 서포트 벡터 머신(Support Vector Machines; 이하 SVM)을 이용한 침입방지시스템 기술을 제안한다. 침입 방지시스템의 탐지 패턴을 SVM을 이용하여 진성경보만을 처리하는 기법으로 실험결과 기존 침입방지시스템과 비교하여, 약 20% 개선된 성능결과를 보였으며, 제안한 침입방지시스템 기법을 통하여 오탐지를 최소화하고 새로운 변종 공격에 대해서도 효과적으로 탐지 가능함을 보였다.

  • PDF

면역 시스템 모델을 기반으로 한 침입 탐지 시스템 설계 및 성능 평가 (Performance Evaluation and Design of Intrusion Detection System Based on Immune System Model)

  • 이종성
    • 한국시뮬레이션학회논문지
    • /
    • 제8권3호
    • /
    • pp.105-121
    • /
    • 1999
  • Computer security is considered important due to the side effect generated from the expansion of computer network and rapid increase of the use of computers. Intrusion Detection System(IDS) has been an active research area to reduce the risk from intruders. We propose a new IDS model, which consists of several computers with IDS, based on the immune system model and describe the design of the IDS model and the prototype implementation of it for feasibility testing and evaluate the performance of the IDS in the aspect of detection time, detection accuracy, diversity which is feature of immune system, and system overhead. The IDSs are distributed and if any of distributed IDSs detect anomaly system call among system call sequences generated by a privilege process, the anomaly system call can be dynamically shared with other IDSs. This makes the IDSs improve the ability of immunity for new intruders.

  • PDF

다중척도 모델의 결합을 이용한 효과적 인 침입탐지 ((Effective Intrusion Detection Integrating Multiple Measure Models))

  • 한상준;조성배
    • 한국정보과학회논문지:정보통신
    • /
    • 제30권3호
    • /
    • pp.397-406
    • /
    • 2003
  • 정보통신기술이 발전함에 따라 내부자의 불법적인 시스템 사용이나 외부 침입자에 의한 중요 정보의 유출 및 조작을 알아내는 침입탐지시스템에 대한 연구가 활발히 이루어지고 있다. 이제까지는 네트워크 패킷, 시스템 호출 감사자료 등의 척도에 은닉 마르코프 모델, 인공 신경망, 통계적 방법 등의 모델링 방법을 적용하는 연구가 이루어졌다. 그러나 사용하는 척도와 모델링 방법에 따라 취약점이 있어 탐지하지 못하는 침입이 많은데 이는 침입의 형태에 따라 흔적을 남기는 척도가 다르기 때문이다. 본 논문에서는 이러한 단일척도 침입탐지시스템의 단점을 보완하기 위해 시스템 호출, 프로세스의 자원점유율, 파일 접근이벤트 등의 세 가지 척도에 대하여 은닉 마르코프 모델, 통계적 방법, 규칙기반 방법을 사용하여 모델링한 후, 그 결과를 규칙기반 방법으로 결합하는 침입탐지 방법을 제안한다. 실험결과 다양한 침입 패턴에 대하여 다중척도 결합방법이 매우 낮은 false-positive 오류율을 보여 그 가능성을 확인할 수 있었다.

An Intrusion Detection Model based on a Convolutional Neural Network

  • Kim, Jiyeon;Shin, Yulim;Choi, Eunjung
    • Journal of Multimedia Information System
    • /
    • 제6권4호
    • /
    • pp.165-172
    • /
    • 2019
  • Machine-learning techniques have been actively employed to information security in recent years. Traditional rule-based security solutions are vulnerable to advanced attacks due to unpredictable behaviors and unknown vulnerabilities. By employing ML techniques, we are able to develop intrusion detection systems (IDS) based on anomaly detection instead of misuse detection. Moreover, threshold issues in anomaly detection can also be resolved through machine-learning. There are very few datasets for network intrusion detection compared to datasets for malicious code. KDD CUP 99 (KDD) is the most widely used dataset for the evaluation of IDS. Numerous studies on ML-based IDS have been using KDD or the upgraded versions of KDD. In this work, we develop an IDS model using CSE-CIC-IDS 2018, a dataset containing the most up-to-date common network attacks. We employ deep-learning techniques and develop a convolutional neural network (CNN) model for CSE-CIC-IDS 2018. We then evaluate its performance comparing with a recurrent neural network (RNN) model. Our experimental results show that the performance of our CNN model is higher than that of the RNN model when applied to CSE-CIC-IDS 2018 dataset. Furthermore, we suggest a way of improving the performance of our model.

과탐지를 제어하는 이상행위 탐지 방법 (Anomaly Detection Method Based on The False-Positive Control)

  • 조혁현;정희택;김민수;노봉남
    • 정보보호학회논문지
    • /
    • 제13권4호
    • /
    • pp.151-159
    • /
    • 2003
  • 인터넷이 일반화되면서, 컴퓨터 시스템을 침입으로부터 효과적이면서 종합적으로 보호하기 위해 침입 탐지 시스템이 필요하게 되었다. 본 연구에서는 이상행위 탐지 기법을 이용한 침입 탐지 시스템을 구축할 때, 수행하는 정상행위 프로파일링 과정에서 발생하는 자기설명모순이 존재함을 제시하고 이를 제어할 수 있는 침입 탐지 방안을 제안하였다. 또한, 연관규칙을 적용한 프로파일링 과정의 결과는, 많은 정상행위 패턴이 생성될 수 있기 때문에, 이를 위해 군집화를 통한 효과적인 적용방안을 제시한다. 마지막으로, 사용자의 행위 패턴에 대해 군집화된 정상행위 패턴 데이터베이스로부터 이상행위 여부를 판단할 수 있는 유사도 함수를 제안하였다.

Protecting Accounting Information Systems using Machine Learning Based Intrusion Detection

  • Biswajit Panja
    • International Journal of Computer Science & Network Security
    • /
    • 제24권5호
    • /
    • pp.111-118
    • /
    • 2024
  • In general network-based intrusion detection system is designed to detect malicious behavior directed at a network or its resources. The key goal of this paper is to look at network data and identify whether it is normal traffic data or anomaly traffic data specifically for accounting information systems. In today's world, there are a variety of principles for detecting various forms of network-based intrusion. In this paper, we are using supervised machine learning techniques. Classification models are used to train and validate data. Using these algorithms we are training the system using a training dataset then we use this trained system to detect intrusion from the testing dataset. In our proposed method, we will detect whether the network data is normal or an anomaly. Using this method we can avoid unauthorized activity on the network and systems under that network. The Decision Tree and K-Nearest Neighbor are applied to the proposed model to classify abnormal to normal behaviors of network traffic data. In addition to that, Logistic Regression Classifier and Support Vector Classification algorithms are used in our model to support proposed concepts. Furthermore, a feature selection method is used to collect valuable information from the dataset to enhance the efficiency of the proposed approach. Random Forest machine learning algorithm is used, which assists the system to identify crucial aspects and focus on them rather than all the features them. The experimental findings revealed that the suggested method for network intrusion detection has a neglected false alarm rate, with the accuracy of the result expected to be between 95% and 100%. As a result of the high precision rate, this concept can be used to detect network data intrusion and prevent vulnerabilities on the network.

패킷간 연관 관계를 이용한 네트워크 비정상행위 탐지 (Network Anomaly Detection based on Association among Packets)

  • 오상현;이원석
    • 정보보호학회논문지
    • /
    • 제12권5호
    • /
    • pp.63-73
    • /
    • 2002
  • 최근에 컴퓨터 침입으로 인한 피해가 날로 증가하고 있으며 다양한 침입 기법들이 새롭게 개발되고 있다. 따라서 침입자들의 행위를 효과적으로 탐지하기 위해서 기존의 오용탐지 방법과 더불어 비정상행위 모델의 적용에 대한 많은 연구가 진행되었다. 본 논문에서는 네트워크를 통해서 수신되는 패킷에 대한 정상행위 패턴을 생성하기 위해서 패킷 내 뿐만 아니라 패킷간의 연관성을 탐사하는 새로운 연관 규칙 알고리즘을 제안한다. 이와 더불어 다양한 실험을 통해서 본 논문에서 제안된 비정상행위 판정시스템에서 탐지율을 최대화 할 수 있는 임계치 값들을 제시한다. 결과적으로 효과적인 비정상행위 판정이 가능하다.

학습 데이터 개선을 통한 Anomaly-based IDS의 성능 향상 방안 (A Study on the Performance Improvement of Anomaly-Based IDS Through the Improvement of Training Data)

  • 문상태;이수진
    • 융합보안논문지
    • /
    • 제19권4호
    • /
    • pp.181-188
    • /
    • 2019
  • 최근 Anomaly 기반 침입탐지시스템에서의 탐지 기준점 생성을 위해 인공지능 기술을 적용하려는 시도가 활발하게 진행되고 있다. 그러나 인공지능 기술의 적용을 제안한 기존 연구들은 대부분 인공 신경망의 구조 개선과 최적의 하이퍼파라미터 값을 찾는데 중점을 두고 있으며, 학습 데이터의 잘못된 구성으로 인해 발생할 수 있는 다양한 문제점들은 해결하지 못하고 있다. 이에 본 논문에서는 학습 데이터의 잘못된 구성으로 인해 나타날 수 있는 주요 문제점을 실험을 통해 식별하고 학습 데이터의 재구성을 통해 그러한 문제점을 개선함으로써 침입탐지 성능을 향상시킬 수 있는 방안을 제안한다.

Enhanced Network Intrusion Detection using Deep Convolutional Neural Networks

  • Naseer, Sheraz;Saleem, Yasir
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권10호
    • /
    • pp.5159-5178
    • /
    • 2018
  • Network Intrusion detection is a rapidly growing field of information security due to its importance for modern IT infrastructure. Many supervised and unsupervised learning techniques have been devised by researchers from discipline of machine learning and data mining to achieve reliable detection of anomalies. In this paper, a deep convolutional neural network (DCNN) based intrusion detection system (IDS) is proposed, implemented and analyzed. Deep CNN core of proposed IDS is fine-tuned using Randomized search over configuration space. Proposed system is trained and tested on NSLKDD training and testing datasets using GPU. Performance comparisons of proposed DCNN model are provided with other classifiers using well-known metrics including Receiver operating characteristics (RoC) curve, Area under RoC curve (AuC), accuracy, precision-recall curve and mean average precision (mAP). The experimental results of proposed DCNN based IDS shows promising results for real world application in anomaly detection systems.

베이지안 네트워크 기반의 변형된 침입 패턴 분류 기법 (Modificated Intrusion Pattern Classification Technique based on Bayesian Network)

  • 차병래;박경우;서재현
    • 인터넷정보학회논문지
    • /
    • 제4권2호
    • /
    • pp.69-80
    • /
    • 2003
  • 프로그램 행위 침입 탐지 기법은 데몬 프로그램이나 루트 권한으로 실행되는 프로그램이 발생시키는 시스템 호출들을 분석하고 프로파일을 구축하여 변형된 공격을 효과적으로 탐지한다. 본 논문에서는 베이지안 네트워크와 다중 서열 정렬을 이용하여 여러 프로세스의 시스템 호출간의 관계를 표현하고, 프로그램 행위를 모델링하여 변형된 이상 침입 행위를 분류함으로써 이상행위를 탐지한다. 제안한 기법을 UNM 데이터를 이용한 시뮬레이션을 수행하였다.

  • PDF