• Title/Summary/Keyword: Anomaly Intrusion Detection

Search Result 141, Processing Time 0.026 seconds

Feature Selection for Anomaly Detection Based on Genetic Algorithm (유전 알고리즘 기반의 비정상 행위 탐지를 위한 특징선택)

  • Seo, Jae-Hyun
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.7
    • /
    • pp.1-7
    • /
    • 2018
  • Feature selection, one of data preprocessing techniques, is one of major research areas in many applications dealing with large dataset. It has been used in pattern recognition, machine learning and data mining, and is now widely applied in a variety of fields such as text classification, image retrieval, intrusion detection and genome analysis. The proposed method is based on a genetic algorithm which is one of meta-heuristic algorithms. There are two methods of finding feature subsets: a filter method and a wrapper method. In this study, we use a wrapper method, which evaluates feature subsets using a real classifier, to find an optimal feature subset. The training dataset used in the experiment has a severe class imbalance and it is difficult to improve classification performance for rare classes. After preprocessing the training dataset with SMOTE, we select features and evaluate them with various machine learning algorithms.

Host based Feature Description Method for Detecting APT Attack (APT 공격 탐지를 위한 호스트 기반 특징 표현 방법)

  • Moon, Daesung;Lee, Hansung;Kim, Ikkyun
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.24 no.5
    • /
    • pp.839-850
    • /
    • 2014
  • As the social and financial damages caused by APT attack such as 3.20 cyber terror are increased, the technical solution against APT attack is required. It is, however, difficult to protect APT attack with existing security equipments because the attack use a zero-day malware persistingly. In this paper, we propose a host based anomaly detection method to overcome the limitation of the conventional signature-based intrusion detection system. First, we defined 39 features to identify between normal and abnormal behavior, and then collected 8.7 million feature data set that are occurred during running both malware and normal executable file. Further, each process is represented as 83-dimensional vector that profiles the frequency of appearance of features. the vector also includes the frequency of features generated in the child processes of each process. Therefore, it is possible to represent the whole behavior information of the process while the process is running. In the experimental results which is applying C4.5 decision tree algorithm, we have confirmed 2.0% and 5.8% for the false positive and the false negative, respectively.

Real-Time Visualization of Web Usage Patterns and Anomalous Sessions (실시간 웹 사용 현황과 이상 행위에 대한 시각화)

  • 이병희;조상현;차성덕
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.14 no.4
    • /
    • pp.97-110
    • /
    • 2004
  • As modem web services become enormously complex, web attacks has become frequent and serious. Existing security solutions such as firewalls or signature-based intrusion detection systems are generally inadequate in securing web services, and analysis of raw web log data is simply impractical for most organizations. Visual display of "interpreted" web logs, with emphasis on anomalous web requests, is essential for an organization to efficiently track web usage patterns and detect possible web attacks. In this paper, we discuss various issues related to effective real-time visualization of web usage patterns and anomalies. We implemented a software tool named SAD (session anomaly detection) Viewer to satisfy such need and conducted an empirical study in which anomalous web traffics such as Misuse attacks, DoS attacks, Code-Red worms and Whisker scans were injected. Our study confirms that SAD Viewer is useful in assisting web security engineers to monitor web usage patterns in general and anomalous web sessions in particular.articular.

A Designing Method of Digital Forensic Snort Application Model (Snort 침입탐지 구조를 활용한 디지털 Forensic 응용모델 설계방법)

  • Noh, Si-Choon
    • Convergence Security Journal
    • /
    • v.10 no.2
    • /
    • pp.1-9
    • /
    • 2010
  • Snort is an open source network intrusion prevention and detection system (IDS/IPS) developed by Sourcefire. Combining the benefits of signature, protocol and anomaly-based inspection, Snort is the most widely deployed IDS/IPS technology worldwide. With millions of downloads and approximately 300,000 registered users. Snort identifies network indicators by inspecting network packets in transmission. A process on a host's machine usually generates these network indicators. This means whatever the snort signature matches the packet, that same signature must be in memory for some period (possibly micro seconds) of time. Finally, investigate some security issues that you should consider when running a Snort system. Paper coverage includes: How an IDS Works, Where Snort fits, Snort system requirements, Exploring Snort's features, Using Snort on your network, Snort and your network architecture, security considerations with snort under digital forensic windows environment.

LSTM Model based on Session Management for Network Intrusion Detection (네트워크 침입탐지를 위한 세션관리 기반의 LSTM 모델)

  • Lee, Min-Wook
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.3
    • /
    • pp.1-7
    • /
    • 2020
  • With the increase in cyber attacks, automated IDS using machine learning is being studied. According to recent research, the IDS using the recursive learning model shows high detection performance. However, the simple application of the recursive model may be difficult to reflect the associated session characteristics, as the overlapping session environment may degrade the performance. In this paper, we designed the session management module and applied it to LSTM (Long Short-Term Memory) recursive model. For the experiment, the CSE-CIC-IDS 2018 dataset is used and increased the normal session ratio to reduce the association of mal-session. The results show that the proposed model is able to maintain high detection performance even in the environment where session relevance is difficult to find.

An Intrusion Detection System with Temporal Event Modeling based on Hidden Markov Model (은닉 마르코프 모델에 기반한 정상행위의 순서적 이벤트 모델링을 통한 침입탐지 시스템)

  • 최종호;조성배
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1999.10c
    • /
    • pp.306-308
    • /
    • 1999
  • 사회분야 전반이 전산화되면서 전산시스템에 대한 효과적인 침입방지와 탐지가 중요한 문제로 대두되었다. 침입행위도 정상사용행위와 마찬가지로 전산시스템 서비스를 사용하므로 호출된 서비스의 순서로 나타난다. 본 논문에서는 정상사용행위에 대한 서비스 호출순서를 모델링 한 후 사용자의 사용패턴을 정상행위와 비교해서 비정상행위(anomaly)를 탐지하는 접근방식을 사용한다. 정상 행위 모델링에는 순서정보를 통계적으로 모델링하고 펴가하는데 널리 쓰이고 있는 HMM(Hidden Markov Model)을 사용하였다. Sun사의 BSM 모듈로 얻어진 3명 사용자의 사용로그에 대하여 본 시스템을 적용한 결과, 학습되지 않은 u2r 침입에 대해 2.95%의 false-positive 오류에서 100%의 탐지율을 보여주었다.

  • PDF

An Anomaly Intrusion Detection Method using Multiple System Log (사용자 로그의 분석을 통한 실시간 비정상행위 탐지 기술)

  • Kim, Myung-Soo;Shin, Jong-Cheol;Jung, Jae-Myung;Ko, You-Sun;Lee, Won-Suk
    • 한국IT서비스학회:학술대회논문집
    • /
    • 2009.05a
    • /
    • pp.361-364
    • /
    • 2009
  • 침입의 방법이 점차 치밀해지고 다양해짐에 따라 새로운 방식의 침입 탐지 기법 역시 지속적으로 요구되어진다. 기존의 오용 탐지 방법론은 탐지율은 뛰어나지만 새로운 침입형태에 대한 대응 능력이 부족하다. 이러한 단점을 보완하고자 등장한 것이 비정상 행위 탐지 방법론이다. 하지만 현재까지의 연구는 네트워크나 서버 OS, 데이터베이스 등 각 개별 분야에 대해서만 진행되고 있어 그 탐지 능력에 한계가 있다. 본 논문에서는 이러한 한계를 극복하고자 사용자의 네트워크 및 운영체제 로그를 통합 하고, 데이터마이닝 기법 중 빈발 패턴 마이닝 기법을 이용한 보다 정확한 비정상 행위 탐지 기술을 제안한다.

  • PDF

Integrated Log Extraction Program for an Anomaly Intrusion Detection in Various Environments (다양한 환경에서의 비정상행위 탐지를 위한 통합 로그 추출 프로그램)

  • Shin, Jong-Cheol;Lee, Jong-Hoon;Lim, Seon-Kyu;Choi, Won-Sub;Lee, Won-Suk
    • 한국IT서비스학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.511-515
    • /
    • 2009
  • 최근 정보기술의 발달과 함께 지속적으로 다양해지고 빨라지는 침입 방법에 대처하기 위해 정보를 보호하기 위한 새로운 방법이 요구되고 있는 실정이다. 이를 해결하기 위해 제안된 방법 중 하나가 네트워크 패킷 데이터에 대한 실시간 데이터 스트림 마이닝 알고리즘 기반의 비정상행위 탐지 기법이다. 이는 현재 발생하고 있는 패턴이 기존 패턴과 다를 경우 비정상행위로 간주되고 사용자에게 알려주는 방법으로, 지금까지 없었던 새로운 형태의 침입에도 대처할 수 있는 능동적인 방어법이라고 할 수 있다. 그러나 이 방법에서 네트워크 패킷 데이터 정보만을 통해 얻어낼 수 있는 정보에는 한계가 있다. 따라서, 본 논문에서는 보다 높은 정확도의 비정상행위 판정을 위한 다양한 환경의 로그들을 추출하여 처리에 적합한 형태로 변환하는 전처리 시스템을 제안한다.

  • PDF

Anomaly Intrusion Detection by Clustering Transactional Audit Streams in a Host Computer (사용자 로그 스트림 클러스터링에 의한 실시간 침입탐지 기법)

  • Park, Nam-Hun;Oh, Sang-Hyun;Lee, Won-Suk
    • 한국IT서비스학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.594-599
    • /
    • 2008
  • 침입탐지에 있어서 사용자 로그 분석은 중요한 주제로서, 기존의 연구들에서 클러스터링 기법들을 사용하여 저장된 사용자 로그들을 분석해왔다. 하지만, 이러한 방법은 고정된 사용자 패턴 분석에는 효율적이지만, 로그 스트림과 같이 무한히 생성되어 사용자 패턴이 변화하는 경우 변화하는 패턴을 분석할 수 없다. 본 연구에서는 무한히 생성되는 사용자 로그 스트림을 대상으로 실시간 침입탐지 방법을 제시한다. 사용자로그의 정보는 사용자 행동에 대한 특성값으로 표현되어, 이러한 특성값들에 대해 실시간 데이터 스트림 클러스터링을 수행하여 이들을 클러스터로 분류한다. 각 클러스터는 사용자의 정상로그에 대한 특성값을 반영하게 되며, 그 결과 과거 사용자 로그에 대한 저장없이 새로운 로그 스트림을 지속적으로 분석할 수 있다. 결과적으로 사용자의 비정상행동을 실시간으로 탐지할 수 있으며, 이를 실험을 통해 평가하였다.

  • PDF

Intrusion Types Identification for HMM-based Anomaly Detection System Using Edit Distance (Edit Distance를 이용한 오용탐지 시스템의 침입유형 판별)

  • 구자민;조성배
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10a
    • /
    • pp.874-876
    • /
    • 2003
  • 전산 시스템에 대한 침입에 대응하기 위하여 시스템 호출 감사자료 척도를 사용하여 은닉 마르코프 모델(HMM)에 적용하는 비정상행위 기반 침입탐지 시스템에 대한 연구가 활발하다. 하지만, 이는 일정한 임계간 이하의 비정상행위만을 감지할 뿐, 어떠한 유형의 침입인지를 판별하지 못한다. 이에 Viterbi 알고리즘을 이용하여 상태 시퀀스를 분석하고, 공격 유형별 표준 상태시퀀스와의 유사성을 측정하여 유형을 판별할 수 있는데, 외부 혹은 내부 환경에 따라 상태 시퀀스가 항상 규칙적으로 추출될 수 없기 때문에, 단순 매칭으로 침입 유형을 판별하기가 어렵다. 본 논문에서는 이러한 문제를 해결하기 위하여 시퀀스의 변형을 효과적으로 고려하는 편집거리(Edit distance)를 이용하여 어떠한 유형의 침입이 발생하였는지를 판별하는 방법을 제안한다. 본 논문에서는 루트권한을 취득하기 위한 대표적인 침입유형으로 가장 널리 쓰이는 버퍼오버플로우 공격에 대해 실험하였는데, 그 결과 세부적인 침입 유형을 잘 판별할 수 있음을 확인하였다.

  • PDF