• Title/Summary/Keyword: Anomaly Intrusion

검색결과 155건 처리시간 0.022초

Analyzing Effective of Activation Functions on Recurrent Neural Networks for Intrusion Detection

  • Le, Thi-Thu-Huong;Kim, Jihyun;Kim, Howon
    • Journal of Multimedia Information System
    • /
    • 제3권3호
    • /
    • pp.91-96
    • /
    • 2016
  • Network security is an interesting area in Information Technology. It has an important role for the manager monitor and control operating of the network. There are many techniques to help us prevent anomaly or malicious activities such as firewall configuration etc. Intrusion Detection System (IDS) is one of effective method help us reduce the cost to build. The more attacks occur, the more necessary intrusion detection needs. IDS is a software or hardware systems, even though is a combination of them. Its major role is detecting malicious activity. In recently, there are many researchers proposed techniques or algorithms to build a tool in this field. In this paper, we improve the performance of IDS. We explore and analyze the impact of activation functions applying to recurrent neural network model. We use to KDD cup dataset for our experiment. By our experimental results, we verify that our new tool of IDS is really significant in this field.

DIntrusion Detection in WSN with an Improved NSA Based on the DE-CMOP

  • Guo, Weipeng;Chen, Yonghong;Cai, Yiqiao;Wang, Tian;Tian, Hui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권11호
    • /
    • pp.5574-5591
    • /
    • 2017
  • Inspired by the idea of Artificial Immune System, many researches of wireless sensor network (WSN) intrusion detection is based on the artificial intelligent system (AIS). However, a large number of generated detectors, black hole, overlap problem of NSA have impeded further used in WSN. In order to improve the anomaly detection performance for WSN, detector generation mechanism need to be improved. Therefore, in this paper, a Differential Evolution Constraint Multi-objective Optimization Problem based Negative Selection Algorithm (DE-CMOP based NSA) is proposed to optimize the distribution and effectiveness of the detector. By combining the constraint handling and multi-objective optimization technique, the algorithm is able to generate the detector set with maximized coverage of non-self space and minimized overlap among detectors. By employing differential evolution, the algorithm can reduce the black hole effectively. The experiment results show that our proposed scheme provides improved NSA algorithm in-terms, the detectors generated by the DE-CMOP based NSA more uniform with less overlap and minimum black hole, thus effectively improves the intrusion detection performance. At the same time, the new algorithm reduces the number of detectors which reduces the complexity of detection phase. Thus, this makes it suitable for intrusion detection in WSN.

웹 어플리케이션 특성 분석을 통한 공격 분류 (Attack Categorization based on Web Application Analysis)

  • 서정석;김한성;조상현;차성덕
    • 한국정보과학회논문지:정보통신
    • /
    • 제30권1호
    • /
    • pp.97-116
    • /
    • 2003
  • 최근 웹 서비스의 증가와 한께 엘 서비스에 대한 공격과 피 피해 규모는 증가하고 있다. 그러나 웹 서비스에 대한 공격은 다른 인터넷 공격들과 성격이 다르고 그에 대한 연구 또한 부족한 현실이다. 더욱이 기존의 침입 탐지 시스템들도 낄 서비스를 보호하는데 적합하지 않다. 이 연구에서는 먼저 웹 공격들을 공격 발생 원인과 공격 탐지 관점에서 분류하고, 마지막으로 위험성 분석을 통하여 웹 공격들을 분류하였다. 이를 통해 엘 서비스를 보호하기 적합한 웹 서비스 특화된 침입 탐지 시스템을 설계, 개발하는데 도움을 주고자 한다.

단일 클래스 모델을 활용한 네트워크 침입 탐지 (Network Intrusion Detection Using One-Class Models)

  • 민병준;박대경
    • 융합보안논문지
    • /
    • 제24권3호
    • /
    • pp.13-21
    • /
    • 2024
  • 4차 산업혁명의 발전으로 네트워크가 급속히 확산되면서 사이버 보안 위협이 더욱 증가하고 있다. 기존의 시그니처 기반 네트워크 침입 탐지 시스템(NIDS)은 알려진 공격을 탐지하는 데 효과적이지만, APT와 같은 새로운 공격에는 한계가 있다. 또한, 지도 학습 기반 딥러닝 모델은 불균형 데이터 문제로 인해 정상 데이터에 편향된 결과를 낳을 위험이 있다. 이러한 문제를 해결하기 위해 본 논문은 정상 데이터만을 학습하여 비정상 데이터를 탐지하는 단일 클래스 모델 기반의 네트워크 침입 탐지 방법을 제안한다. DeepSVDD와 MemAE 모델을 활용해 NSL-KDD 데이터 셋에서 제안하는 방법의 효율성을 검증하며, 지도 학습 모델과의 비교를 통해 제안된 방법이 실제 네트워크 침입 탐지 문제에서 더욱 효과적임을 확인한다.

NetFlow 데이터를 이용한 실시간 네트워크 트래픽 어노멀리 검출 기법 (A Real-Time Network Traffic Anomaly Detection Scheme Using NetFlow Data)

  • 강구홍;장종수;김기영
    • 정보처리학회논문지C
    • /
    • 제12C권1호
    • /
    • pp.19-28
    • /
    • 2005
  • 최근 알려지지 않은 공격(unknown attack)으로부터 네트워크를 보호하기 위한 네트워크 트래픽 어노멀리(anomaly) 검출에 대한 관심이 고조되고 있다. 본 논문에서는 캠퍼스 네트워크의 보드라우터(border router)의 NetFlow 데이터로 제공되는 초당비트수(bits per second)와 초당플로수(flows per second)의 상관관계를 단순회귀분석을 통하여 새로운 어노멀리 검출 기법을 제시하였다. 새로이 제안된 기법을 검증하기 위해 실지 캠퍼스 네트워크에 적용하였으며 그 결과론 Holt-Winters seasonal(HWS) 알고리즘과 비교하였다. 특히, 제안된 기법은 기존 RRDtool에 통합시켜 실시간 검출이 가능하도록 설계하였다.

VANETs의 보안을 위한 비정상 행위 탐지 방법 (An Anomaly Detection Method for the Security of VANETs)

  • 오선진
    • 한국인터넷방송통신학회논문지
    • /
    • 제10권2호
    • /
    • pp.77-83
    • /
    • 2010
  • 차량 애드 혹 망 (Vehicular Ad Hoc Networks: VANETs)은 일반적으로 이동성이 높은 차량 노드들로 구성되어 매우 짧은 시간 망 위상이 지속되므로 불안정한 통신 링크를 갖는 자기 조직화 P2P 망이다. VANETs은 고정된 인프라 구조나 중앙 통제 라우팅 장비 없이 자동적으로 망구조를 구성하고, 차량 노드들은 시간에 따라 고속으로 이동하며 망에 결합하거나 이탈하는 개방 망이므로 중앙 집중식 제어 없이 누구나 접속을 허용하기 때문에 망상에 해롭고 비정상 행위 노드들에 대한 침입에 매우 취약하다. 본 논문에서는 이러한 VANETs에서의 노드들의 활동에 대한 비정상 행위를 효율적으로 식별할 수 있는 러프집합기반 비정상 행위 탐지방법을 제안하고, 그 성능을 모의실험을 통해 임계 허용 오차에 대한 비정상 행위 탐지율과 거짓 경고율로 평가하였다.

사운덱스 알고리즘을 적용한 신경망라 뉴로-처지 기법의 호스트 이상 탐지 (Host Anomaly Detection of Neural Networks and Neural-fuzzy Techniques with Soundex Algorithm)

  • 차병래;김형종;박봉구;조혁현
    • 정보보호학회논문지
    • /
    • 제15권2호
    • /
    • pp.13-22
    • /
    • 2005
  • 본 논문에서는 시스템 호출을 이용하여 이상 침입 탐지 시스템의 성능을 향상시키기 위해, 특징 선택과 가변 길이 데이터를 고정 길이 학습 패턴으로 변환 생성하는 문제를 해결하기 위한 사운덱스 알고리즘을 적용한 신경망 학습을 통하여 이상 침입 탐지의 연구를 하고자 한다. 즉, 가변 길이의 순차적인 시스템 호출 데이터를 사운덱스 알고리즘에 의한 고정 길이의 행위 패턴을 생성하여 역전파 알고리즘과 퍼지 멤버쉽 함수에 의해 신경망 학습을 수행하였다. 역전파 신경망과 뉴로-퍼지 기법을 UNM의 Sendmail Data Set을 이용하여 시스템 호출의 이상침입 탐지에 적용하여 시간과 공간 복잡도 그리고 MDL 측면에서 성능을 검증하였다.

DNS key technologies based on machine learning and network data mining

  • Xiaofei Liu;Xiang Zhang;Mostafa Habibi
    • Advances in concrete construction
    • /
    • 제17권2호
    • /
    • pp.53-66
    • /
    • 2024
  • Domain Name Systems (DNS) provide critical performance in directing Internet traffic. It is a significant duty of DNS service providers to protect DNS servers from bandwidth attacks. Data mining techniques may identify different trends in detecting anomalies, but these approaches are insufficient to provide adequate methods for querying traffic data in significant network environments. The patterns can enable the providers of DNS services to find anomalies. Accordingly, this research has used a new approach to find the anomalies using the Neural Network (NN) because intrusion detection techniques or conventional rule-based anomaly are insufficient to detect general DNS anomalies using multi-enterprise network traffic data obtained from network traffic data (from different organizations). NN was developed, and its results were measured to determine the best performance in anomaly detection using DNS query data. Going through the R2 results, it was found that NN could satisfactorily perform the DNS anomaly detection process. Based on the results, the security weaknesses and problems related to unpredictable matters could be practically distinguished, and many could be avoided in advance. Based on the R2 results, the NN could perform remarkably well in general DNS anomaly detection processing in this study.

네트워크 트래픽 데이터의 희소 클래스 분류 문제 해결을 위한 전처리 연구 (A Pre-processing Study to Solve the Problem of Rare Class Classification of Network Traffic Data)

  • 류경준;신동일;신동규;박정찬;김진국
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제9권12호
    • /
    • pp.411-418
    • /
    • 2020
  • 정보보안을 위한 IDS(Intrusion Detection Systems)는 통상적으로 서명기반(signature based) 침입탐지시스템과 이상기반(anomaly-based) 침입 탐지시스템으로 분류한다. 이 중에서도 네트워크에서 발생하는 트래픽 데이터를 기계학습으로 분석하는 이상기반 IDS 연구가 활발하게 진행됐다. 본 논문에서는 공격 유형 학습에 사용되는 데이터에 존재하는 희소 클래스 문제로 인한 성능 저하를 해결하기 위한 전처리 방안에 대해 연구했다. 희소 클래스(Rare Class)와 준 희소 클래스(Semi Rare Class)를 기준으로 데이터를 재구성하여 기계학습의 분류 성능의 개선에 대하여 실험했다. 재구성된 3종의 데이터 세트에 대하여 Wrapper와 Filter 방식을 연이어 적용하는 하이브리드 특징 선택을 수행한 이후에 Quantile Scaler로 정규화를 처리하여 전처리를 완료한다. 준비된 데이터는 DNN(Deep Neural Network) 모델로 학습한 후 TP(True Positive)와 FN(False Negative)를 기준으로 분류 성능을 평가했다. 이 연구를 통해 3종류의 데이터 세트에서 분류 성능이 모두 개선되는 결과를 얻었다.

역전파 알고리즘 기반의 침입 패턴 분석 (An Analysis of Intrusion Pattern Based on Backpropagation Algorithm)

  • 우종우;김상영
    • 인터넷정보학회논문지
    • /
    • 제5권5호
    • /
    • pp.93-103
    • /
    • 2004
  • 침입 탐지시스템 (Intrusion Detection System: IDS)은 기존의 수동적인 탐지 기능에서 벗어나, 보다 다양한 형태와 방법론으로 연구되고 있다. 특히, 최근에는 대용량의 시스템 감사 데이터를 빠르게 처리하고 변형된 형태의 공격에 대비한 수 있는 내구력을 가진 형태의 방법론들이 요구되고 있으며, 이러한 조건을 만족하는 데이터마이닝이나 신경망을 이용한 침입 탐지 시스템에 대한 연구가 활발해 지고 있다. 본 논문에서는 우선. 최근의 다양한 형태의 침입경향들을 분석하고, 보다 효과적인 침입탐지를 위한 방안으로 신경망 기반의 역전파 알고리즘을 이용한 침입 탐지 시스템을 설계$.$구현 하였다. 본 연구의 시스템은 비정상행위 탐지(Anomoly Defection)와 오용탐지 (Misuse Detection)의 두 가지 방법론을 모두 수용하는 방법론을 사용하였으며, 신뢰성있는 KDD Cup ‘99의 데이터를 통한 침입패턴의 분석 및 실험을 수행 하였다. 또한 객체지향적인 네트워크 설계를 통하여 역전파 알고리즘 이외의 다른 알고리즘도 쉽게 적용이 가능하도록 하였다.

  • PDF