• Title/Summary/Keyword: Anodized aluminium

Search Result 20, Processing Time 0.023 seconds

Anodization of Aluminium Samples in Boric Acid Solutions by Optical Interferometry Techniques

  • Habib, K.
    • Corrosion Science and Technology
    • /
    • v.4 no.6
    • /
    • pp.217-221
    • /
    • 2005
  • In the present investigation, holographic interferometry was utilized for the first time to monitor in situ the thickness of the oxide film of aluminium samples during anodization processes in boric acid solutions. The anodization process (oxidation) of the aluminium samples was carried out by the technique of the electrochemical impedance spectroscopy(EIS), in different concentrations of boric acid (0.5-5.0% $H_3BO_3$) at room temperature. In the mean time, the real-time holographic interferometry was used to measure the thickness of anodized (oxide) film of the aluminium samples in solutions. Consequently, holographic interferometry is found very useful for surface finish industries especially for monitoring the early stage of anodization processes of metals, in which the thickness of the anodized film of the aluminium samples can be determined without any physical contact. In addition, measurements of electrochemical values such as the alternating current (A.C) impedance(Z), the double layer capacitance($C_{dl}$), and the polarization resistance(Rp) of anodized films of aluminium samples in boric acid solutions were made by the electrochemical impedance spectroscopy(EIS). Attempts to measure electrochemical values of Z, Cdl, and Rp were not possible by holographic interferometry in boric acid especially in low concentrations of the acid. This is because of the high rate of evolutions of interferometric fringes during the anodization process of the aluminium samples in boric acid, which made measurements of Z, Cdl, and Rp are difficult.

A Study on the Infrared Radiation Properties of Anodized Aluminum (양극산화된 알루미늄의 적외선 복사특성 연구)

  • 강병철;최정진;김기호
    • Journal of the Korean institute of surface engineering
    • /
    • v.35 no.3
    • /
    • pp.149-157
    • /
    • 2002
  • Spectral emissivity depends on the surface conditions of the materials. The mechanisms that affect the spectral emissivity in anodic oxide films on aluminum were investigated. The aluminum specimens were anodized in a sulfuric acid solution and the thickness of the resulting oxide film formed changed with the anodizing time. FT-IR spectrum analysis identified the anodic oxide film as boehmite ($Al_2$$O_3$.$H_2$O). Both the infrared emisivity and reflectivity of the anodized aluminum were affected by the structure of the anodic oxide film because Al-OH and Al-O-Al have a pronounced absorption band in the infrared region of the spectrum. The presence of an anodic oxide film on aluminum caused a rapid drop in the infrared reflectivity. An aluminum surface in the clean state had an emissivity of approximately 0.2. However, the infrared emissivity rapidly increased to 0.91 as the thickness of the anodic oxide film increased.

Corrosion Characteristics of the Sulfuric Acid Anodized Film Formed on Al6070 Alloy in Nitric Acid Vapor Environment (질산가스분위기에서 황산 양극산화 피막처리된 Al6070 합금의 부식특성)

  • Chang, Il Ho;Jung, Do Young;Gook, Jin Seon
    • Journal of the Korean institute of surface engineering
    • /
    • v.45 no.5
    • /
    • pp.198-205
    • /
    • 2012
  • The corrosion properties of anodized films on aluminium 6070 alloy in a sulfuric acid have been studied. Comparison to evaluate the anodized A6070 and pure 6070 specimen, corrosion tests in $HNO_3$ vapor environment of the 20 wt.% were performed up to 72 hours. Characteristics of film formation and surface morphology were examined by optical microscopy, FE-SEM, and EDS. The oxide film anodized in the sulfuric acid solution contained 5 to 10 wt.% of sulfur. In the initial stages of corrosion, anodized specimens exhibited corrosion resistance than the pure specimen. However, the corrosion conditions in 24 hours, corrosion was far more anodized specimen than pure specimen. Therefore, anodized films contained sulfur, nitric acid vapor in the environment is thought to stimulate corrosion.

A Study on the TFT Fabrication Using Anodized Aluminium Oxide Film (양극산화 알루미늄피막을 이용한 박막트랜지스터의 구성에 관한 연구)

  • 김봉흡;홍창희
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.31 no.9
    • /
    • pp.74-81
    • /
    • 1982
  • One of the stable thin film transistor fabricated by cadmium suifide with the anodized aluminium oxide as gate material. The principle of the operation for the device is based on the control mechanism of injected majority carricrs to the wide band gap semiconductor, that is cadmium sulfide, by means of the function of the gate control. The fabricated device constructed by evaporating CdS layer in the form of microcrystalline on the oxided thin film characterized by ea, 80 as voltage amplification factor, 1/100 mho as transconductance, 8 kohm as dynamic output resistance, furthermore gain band width products is about 15 MHz.

  • PDF

Improvement of Corrosion Resistance of Aluminum Alloy with Wettability Controlled Porous Oxide films

  • Sakairi, M.;Goyal, V.
    • Corrosion Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.166-170
    • /
    • 2016
  • The combined process of porous type anodizing and desiccation treatment was applied to improve wettability of A1050 aluminum alloy. The water contact angles of anodized samples were increaseds considerably with desiccation treatment. However, there was no considerable effect of polishing and anodizing time on water contact angle. The corrosion behavior with the treatments was investigated electrochemically. The corrosion resistance of the samples in 3.5 mass% NaCl solutions increased with higher contact angle. Anodized and desiccated samples showed better corrosion resistance than un-desiccated samples around rest potential region.

Influences of Anodizing and Thermal Oxidation on the Galvanic Corrosion between Aluminium and Titanium and GECM (GECM과 Al 및 Ti 간의 갈바닉 부식에 미치는 양극산화 및 열산화의 영향)

  • Kim, Young-Sik;Lim, Hyun-Kwon;Sohn, Young-Il;Yoo, Young-Ran;Chang, Hyun-Young
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.6
    • /
    • pp.514-522
    • /
    • 2010
  • Graphite epoxy composite material (GECM) shows high specific strength and its application in the aerospace industry is gradually increasing. However, its application would induce galvanic corrosion between GECM and metallic materials. This work focused on the effects of anodizing and thermal oxidation on galvanic corrosion in a 3.5% NaCl solution between GECM and aluminium and titanium. In the case of anodized aluminium, galvanic corrosion resistance to the GECM was greatly improved by the anodizing treatment regardless of area ratio. In the case of anodized titanium, the anodizing by a formation voltage of 50V increased corrosion resistance of titanium in galvanic tests. Thermal oxidation of titanium also improved corrosion resistance of Ti to GECM.

Fabrication of Wafer-Scale Anodized Aluminum oxide(AAO)-Based capacitive biosensor

  • Kim, Bongjun;Oh, Jeseung;Yoo, Kyunghwa
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.372.2-372.2
    • /
    • 2016
  • Various nanobiosensors have been developed and extensively investigated. For their practical applications, however, the reproducibility and uniformity should be good enough and the mass-production should be possible. To fabricate anodized aluminium oxide (AAO)-based nanobiosesnor on wafer scale, we have designed and constructed a wafer-scale anodizing system. $1{\mu}m$-thick-aluminum is deposited on 4 inch SiO2/Si substrate and then anodized, resulting in uniform nanopores with an average pore diameter of about 65 nm. Furthermore, most AAO sensors constructed on this wafer provide capacitance values of 30 nF ~ 60 nF in PBS, demonstrating their uniformity.

  • PDF

The Influence of Electrolytic Condition on Tunnel Etching and Capacitance Gain of High purity Aluminium Foil on capacitor (전해조건이 고순도 알루미늄 박 콘덴서의 터널에칭과 정전용량에 미치는 영향)

  • 이재운;이병우;김용현;이광학;김흥식
    • Journal of the Korean institute of surface engineering
    • /
    • v.30 no.1
    • /
    • pp.44-56
    • /
    • 1997
  • Influence of electrochemical etching conditions on capacitance gain of aluminium electrolytic on capacitor foil has been investigated by etching cubic textured high purity aluminum foil in dilute hydrochloric acid. Uniformly distributed etch pit tunnels on aluminum surface have been obtained by pretreatment aluminium foil in 10% NaOH solution for 5 minutes followed by electrochemical etching. Electrostatic capacitance of etched aluminium foil anodized to high voltage increased with the increase of current density, total charge, temperature and concentration of electrolyte up to maximum CV-value and then deceased. Election optical observation of the etched foil revealed that the density of etch of etch pits increased with the increase of current density and concentration of electrolyte. this increase of etch pit density enlarged of the increase of capacitance. However, abnormal high current density and high electrolyte concentration induced the local dissolution of the foil surface which resulted the decrease of foil capacitance.

  • PDF

A Study on the Antibacterial Properties of Ag Electropulsed Anodized Aluminium Alloy (Pulse도금법에 의한 Ag주입 양극산화 알루미늄 합금의 항균특성에 관한 기초연구)

  • Lim, Ki-Young;Ki, Joon-Seo;Jang, Yong-Seok;Lee, Woo-Min;Yoon, Jeong-Mo
    • Korean Journal of Materials Research
    • /
    • v.16 no.10
    • /
    • pp.639-646
    • /
    • 2006
  • Over the last two decades, microbiologically influenced corrosion (MIC) of metallic materials has received considerable attention due to its serious effects on industrial field. In this context, it is important to devise control methods which inhibit biofilm formation on various metallic compounds and are compatible with environment. It was change of various conditions (duty cycle, current density, $AgNO_3$ concentration and pH) for injection of Ag particles in anodized Aluminum alloy pore using pulsed current. Optimal condition was obtained by means of FE-SEM, ICP analysis etc. The antibacterial metal's specimen were manufactured under optimal condition and this specimen were tested the antibacterial characterization and anticorrosion characterization. In result of test, we can confirmed that the antibacterial characterization and anticorrosion characterization of the specimens of injected Ag particles in anodized Aluminum alloy pore using pulsed current were better than the anodized Aluminum alloy specimens.