• 제목/요약/키워드: Anodized

검색결과 338건 처리시간 0.023초

양극산화 제어에 의한 TiO2 나노튜브의 광전기화학 특성 (Photoelectrochemical Properties of TiO2 Nanotubes by Well-Controlled Anodization Process)

  • 정다솔;김동현;정현성
    • 한국표면공학회지
    • /
    • 제52권6호
    • /
    • pp.298-305
    • /
    • 2019
  • We investigated a correlation between morphology and photoelectrochemical properties of TiO2 nanotubes fabricated by well-controlled anodization processes. Anodization in an ethylene-glycol-based electrolyte solution accelerated the rapid grow rate of TiO2 nanotubes, but also cause problems such as delamination at the interface between TiO2 nanotubes and a Ti substrate, and debris on the top of the nanotube. The applied voltages for the anodization of TiO2 were adjusted to avoid the interface delamination. The heat treatment and the anodizing time were also controlled to enhance the crystallinity of the as-prepared TiO2 nanotubes and to increase the surface area with the varied length of the anodized TiO2 nanotubes. Additionally, a 2-step anodization process was utilized to remove the debris on the tube top. The photoelectrochemical properties of TiO2 nanotubes prepared with the carefully tailored conditions were investigated. By removing the debris on TiO2 nanotubes, applied bias photon-to-current efficiency (ABPE) of TiO2 nanotubes increased up to 0.33%.

Plasma source ion implantations for shallow $p^+$/n junction

  • Jeonghee Cho;Seuunghee Han;Lee, Yeonhee;Kim, Lk-Kyung;Kim, Gon-Ho;Kim, Young-Woo;Hyuneui Lim;Moojin Suh
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2000년도 제18회 학술발표회 논문개요집
    • /
    • pp.180-180
    • /
    • 2000
  • Plasma source ion implantation is a new doping technique for the formation of shallow junction with the merits of high dose rate, low-cost and minimal wafer charging damage. In plasma source ion implantation process, the wafer is placed directly in the plasma of the appropriate dopant ions. Negative pulse bias is applied to the wafer, causing the dopant ions to be accelerated toward the wafer and implanted below the surface. In this work, inductively couples plasma was generated by anodized Al antenna that was located inside the vacuum chamber. The outside wall of Al chamber was surrounded by Nd-Fe-B permanent magnets to confine the plasma and to enhance the uniformity. Before implantation, the wafer was pre-sputtered using DC bias of 300B in Ar plasma in order to eliminate the native oxide. After cleaning, B2H6 (5%)/H2 plasma and negative pulse bias of -1kV to 5 kV were used to form shallow p+/n junction at the boron dose of 1$\times$1015 to 5$\times$1016 #/cm2. The as-implanted samples were annealed at 90$0^{\circ}C$, 95$0^{\circ}C$ and 100$0^{\circ}C$during various annealing time with rapid thermal process. After annealing, the sheet resistance and the junction depth were measured with four point probe and secondary ion mass spectroscopy, respectively. The doping uniformity was also investigated. In addition, the electrical characteristics were measured for Schottky diode with a current-voltage meter.

  • PDF

코발트-철을 전해석출한 양극산화피막의 제작과 자기특성 (Preparations and Magnetic Properties of Aluminum Anodic Oxidized Films Electrodeposited Cobalt-Iron Alloys)

  • 강희우
    • 한국자기학회지
    • /
    • 제4권1호
    • /
    • pp.25-31
    • /
    • 1994
  • 코발트와 철의 이온을 혼합한 산성수용액 중에서, 알루미늄 양극산화피막에 전해석출 하여 제작된 자성막은, 코발트조성이 증가함에 따라 발크합금의 경우와 마찬가지로 상전이(phase shifting) 하였다. 입자직경이 $150\;{\AA}$의 시료의 경우 조성이 25-35 at% Co에서 큰 포화자화, 고항자력, 큰 자기이방성 에너지 및 우수한 각형비 등에 기인하는 큰 자기에너지 적($BH_{max}$)이 얻어진다. 그러나 입자직경이 $450\;{\AA}$의 경우에는, 코발트가 50-70 at% 일때 초기석출부 에 강자성체인 FeC가 아주 강하게 배향하므로, 입자의 큰 형상이방성(수직자기이방성)이 없어지고 면내 방향의 자기이방성을 나타낸다. 그리고 같은 조성에서 초기석출부를 제거하여 FeC의 영향을 없앨때, 주직자기이방성이 회복되었다.

  • PDF

인산용액에서 양극산화 인가전압에 따른 알루미늄 산화피막 성장 관찰 (Observation of Diverse Aluminum Oxide Structures in a Phosphoric Acid Solution according to the Applied Anodization Voltage)

  • 정찬영
    • 마이크로전자및패키징학회지
    • /
    • 제26권1호
    • /
    • pp.35-39
    • /
    • 2019
  • 현재까지 다공성 알루미나 구조물은 대표적으로 양극산화 방법으로 구현되어 오고 있다. 양극산화 방법을 통해 규칙적인 배열을 가진 알루미늄 산화 피막은 쉽게 만들 수 있지만, 복합 구조물 형태를 가진 산화피막은 상대적으로 구현하기가 어렵다. 본 연구는 인산용액에서 양극산화 인가전압에 따른 피막 기공 크기, 두께 및 구조물 형태 변화를 관찰하고자 한다. 다층 복합 산화물 구조물 구현을 위해 양극산화 인가전압 조건을 조절하였고, 실험 조건은 10% 인산용액에서 양극산화 인가전압 100 V와 120 V로 각각 수행하였다. 실험 결과는 각 조건에 따라 다공성 구조물과 복합 구조물 형태의 산화물 구조를 구현할 수 있었다.

전자빔 증발법 박막 증착을 이용한 양극 산화 알루미늄 템플릿의 나노 포어 가공 연구 (Study on the narrowed nanopores of anodized aluminum oxide template by thin-film deposition using e-beam evaporation)

  • 이승훈;이민영;김천중;김관오;윤재성;유영은;김정환
    • 한국표면공학회지
    • /
    • 제54권1호
    • /
    • pp.25-29
    • /
    • 2021
  • The fabrication of nanopore membrane by deposition of Al2O3 film using electron-beam evaporation, which is fast, cost-effective, and negligible dependency on substance material, is investigated for potential applications in water purification and sensors. The decreased nanopore diameter owing to increased wall thickness is observed when Al2O3 film is deposited on anodic aluminum oxide membrane at higher deposition rate, although the evaporation process is generally known to induce a directional film deposition leading to the negligible change of pore diameter and wall thickness. This behavior can be attributed to the collision of evaporated Al2O3 particles by the decreased mean free path at higher deposition rate condition, resulting in the accumulation of Al2O3 materials on both the surface and the edge of the wall. The reduction of nanopore diameter by Al2O3 film deposition can be applied to the nanopore membrane fabrication with sub-100 nm pore diameter.

NH4F가 첨가된 0.5 M 옥살산 전처리가 AZ91 마그네슘 합금의 PEO 피막 형성에 미치는 영향 (Effect of pre-treatment in 0.5 M oxalic acid containing various NH4F concentrations on PEO Film Formation of AZ91 Mg Alloy)

  • 권두영;송풍근;문성모
    • 한국표면공학회지
    • /
    • 제55권1호
    • /
    • pp.24-31
    • /
    • 2022
  • This study investigated the effect of pre-treatment on the PEO film formation of AZ91 Mg alloy. The pre-treatment was conducted for 10 min at room temperature in 0.5 M oxalic acid (C2H2O4) solution containing various ammonium fluoride (NH4F) concentrations. The pre-treated AZ91 Mg specimens were anodized at 100 mA/cm2 of 300 Hz AC for 2 min in 0.1 M NaOH + 0.4 M Na2SiO3 solution. When AZ91 Mg alloy was pretreated in 0.5 M oxalic acid with NH4F concentration less than 0.3 M, continuous dissolution of the AZ91 Mg alloy occurred together with the formation of black smuts and arc initiation time for PEO film formation was very late. It was noticed that corrosion rate of the AZ91 Mg alloy became faster if small amount of NH4F concentration, 0.1 M, is added. The fast corrosion is attributable to fast formation of porous fluoride together with porous oxides in the reaction products. On the other hand, when AZ91 Mg alloy was pretreated in 0.5 M oxalic acid with sufficient NH4F more than 0.3 M, a thin and dense protective film was formed on the AZ91 Mg alloy surface which resulted in faster initiation of arcs and formation of PEO film.

Marginal bone level change during sequential loading periods of partial edentulous rehabilitation using immediately loaded self-tapping implants: a 6.5-year retrospective study

  • Wang, Jing;Zhang, Zhengchuan;Deng, Feilong
    • The Journal of Advanced Prosthodontics
    • /
    • 제14권3호
    • /
    • pp.133-142
    • /
    • 2022
  • PURPOSE. A large number of studies have suggested the practicability and predictability of immediate implant function, but few studies have reported marginal bone level changes during sequential loading periods. The purpose of this study was to evaluate the marginal bone remodeling of immediately loaded self-tapping implants both at each time point and during each loading period between two time points. MATERIALS AND METHODS. The patients included in this retrospective study were treated with immediately loaded NobelSpeedy Replace implants between August 2008 and July 2009. Differences in the marginal bone level (MBL) at each time point and the marginal bone level change (ΔMBL) between two time points were analyzed with Bonferroni correction (P < .05). RESULTS. Overall, 24 patients (mean age, 47.3 ± 12.8 years) with 42 immediately loaded implants and a median follow-up of 6.5 years (IQR, 67.8 months) were included. The cumulative survival rate after 10 - 12 years was 95.2%. Continuous but slow marginal bone loss was observed during long-term follow-up. MBL at both 7.5 years and 11 years was significantly lower than that at loading, 6 months, 2 years and 4 years (P < .05). No bone loss difference was found in any period before 4 years of follow up (P > .05). The loading period of 4 years to 7.5 years showed the largest ΔMBL compared to those of other time periods (P < .05). CONCLUSION. Slight bone loss occurred continuously, and more radical changes of marginal bone can be observed during the period of 4-7.5 years. Thus, long-term effective follow-up of immediately loaded implants is needed.

리튬이차전지용 고용량 음극을 위한 구리@코발트산화물 코어-쉘 수지상 기반 3차원 다공성 박막 (Three-dimensional porous films consisting of copper@cobalt oxide core-shell dendrites for high-capacity lithium secondary batteries)

  • 주소영;최윤주;최우성;신헌철
    • 한국표면공학회지
    • /
    • 제56권1호
    • /
    • pp.104-114
    • /
    • 2023
  • Three dimensional (3D) porous structures consisting of Cu@CoO core-shell-type nano-dendrites were synthesized and tested as the anode materials in lithium secondary batteries. For this purpose, first, the 3D porous films comprising Cu@Co core-shell-type nano-dendrites with various thicknesses were fabricated through the electrochemical co-deposition of Cu and Co. Then the Co shells were selectively anodized to form Co hydroxides, which was finally dehydrated to get Cu@CoO nanodendrites. The resulting electrodes exhibited very high reversible specific capacity almost 1.4~2.4 times the theoretical capacity of commercial graphite, and excellent capacity retention (~90%@50th cycle) as compared with those of the existing transition metal oxides. From the analysis of the cumulative irreversible capacity and morphology change during charge/discharge cycling, it proved that the excellent capacity retention was attributed to the unique structural feature of our core-shell structure where only the thin CoO shell participates in the lithium storage. In addition, our electrodes showed a superb rate performance (70.5%@10.8 C-rate), most likely due to the open porous structure of 3D films, large surface area thanks to the dendritic structure, and fast electron transport through Cu core network.

An aluminum-based reflective nanolens array that enhances the effectiveness of a continuous-flow ultraviolet disinfection system for livestock water

  • Changhoon Chai;Jinhyung Park
    • Journal of Animal Science and Technology
    • /
    • 제65권1호
    • /
    • pp.258-270
    • /
    • 2023
  • Climate change has worsened droughts and floods, and created conditions more likely to lead to pathogen contamination of surface water and groundwater. Thus, there is a growing need to disinfect livestock water. Ultraviolet (UV) irradiation is widely accepted as an appropriate method for disinfecting livestock water, as it does not produce hazardous chemical compounds and kills pathogens. However, UV-based disinfection inevitably consumes electricity, so it is necessary to improve UV disinfection effectiveness. Aluminum-based reflective nanolens arrays that enhanced the effectiveness of a continuous-flow UV water disinfection system were developed using electrochemical and chemical processes, including electropolishing and two-step anodization. A continuous UV disinfection system was custom designed and the parts were produced using a three-dimensional printer. Electropolished aluminum was anodized at 40 and 80 V in 0.3 M oxalic acid, at 120 and 160 V in 1.0 M phosphoric acid, and at 200 and 240 V in 1.5 M citric acid. The average nanolens diameters (D) of the aluminum-based reflective nanolens arrays prepared using 40, 80, 120, 160, 200, and 240 V anodization were 95.44, 160.98, 226.64, 309.90, 296.32, and 339.68 nm, respectively. Simple UV reflection behind irradiated water disinfected Escherichia coli O157:H7 in water more than did the non-reflective control. UV reflection and focusing behind irradiated water using an aluminum-based reflective nanolens array disinfected E. coli O157:H7 more than did simple UV reflection. Such enhancement of the UV disinfection effectiveness was significantly effective when a nanolens array with D 226.64 nm, close to the wavelength of the irradiated UV (254 nm), was used.

함정의 평판형 방향타 캐비테이션 침식에 대한 모형 시험 연구 (Study on the Model Tests of Cavitation Erosion Occurring in Navy Ship's Flat-Type Rudder)

  • 백부근;안종우;박영하;;송재열;고윤호
    • 대한조선학회논문집
    • /
    • 제60권1호
    • /
    • pp.31-37
    • /
    • 2023
  • In the present study, a method of performing cavitation erosion test directly on the anodized surface of the rudder model is proposed, not applying ink or paint on its surface. An image processing technique is newly developed to quantitatively evaluate the erosion damages on the rudder model surface after erosion test. The preprocessing saturation image, image smoothing, adaptive hysteresis thresholding and eroded area detection algorithms are in the image processing program. The rudder cavitation erosion tests are conducted in the rudder deflection angle range of 0° to -4°, which is used to maintain a straight course at the highest speed of the targeted navy ship. In the case of the conventional flat-type full-spade rudder currently being used in the target ship, surface erosion can occur on the model rudder surface in the above rudder deflection angle range. The bubble type of cavitation occurs on rudder surface, which is estimated to be the main reason of erosion damage on the rudder surface.