• Title/Summary/Keyword: Anode

Search Result 2,547, Processing Time 0.032 seconds

Preparation and Characterization of White Polymer Light Emitting Diodes using PFO:MEH-PPV (PFO:MEH-PPV를 이용한 White PLED의 제작과 특성평가)

  • Shin, Sang-Baie;Gong, Su-Choel;Park, Hyung-Ho;Jeon, Hyeong-Tag;Chang, Ho-Jung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.15 no.4
    • /
    • pp.59-64
    • /
    • 2008
  • In this paper, white polymer light emitting diodes(WPLEDs) were fabricated and investigated the electrical and optical properties for the prepared devices. ITO(indium tin oxide) and PEDOT:PSS [poly(3,4-ethylenedioxythiophene):poly(styrene sulfolnate)] as anode and hole injection materials, PFO [poly(9,9-dioctylfluorene)] and MEH-PPV [poly(2-methoxy-5(2-ethylhe xoxy)-1,4-phenylenevinyle)] were used as the light emitting host and guest materials, respectively. The LiF(lithium flouride) and Al(aluminum) were used electron injection materials and cathode materials. Finally, the WPLED with structure of ITO/PEDOT:PSS/PFO:MEH-PPV/LiF/Al was fabricated. The prepared WPLED showed white emission with CIE coordinates of (x=0.36, y=0.35) at the applied voltage of 9V. The maximum current density and luminance were about $740mA/cm^2\;and\;900cd/m^2$ at 13V, respectively. And the maximum current efficiency was 0.37 cd/A at $200cd/m^2$ in luminance.

  • PDF

Characterization of Ni-YSZ cermet anode for SOFC prepared by glycine nitrate process (Glycine nitrate process에 의한 제조된 SOFC anode용 Ni-YSZ cermet의 물성)

  • Lee, Tae-Suk;Ko, Jung-Hoon;Lee, Kang-Sik;Kim, Bok-Hee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.1
    • /
    • pp.21-26
    • /
    • 2011
  • Ni-YSZ (Yttria Stabilized Zirconia) composite powders were fabricated by glycine nitrate process. The prepared powders were sintered at $1300{\sim}1400^{\circ}C$ for 4 h in air and reduced at $1000^{\circ}C$ for 2 h in a nitrogen and hydrogen atmosphere. The microstructure, electrical conductivity, thermal expansion and mechanical properties of the Ni-YSZ cermets have been investigated with respect to the volume contents of Ni. A porous microstructure consisting of homogeneously distributed Ni and YSZ phases together with well-connected grains was observed. It was found that the open porosity, electrical conductivity, thermal expansion and bending strength of the cermets are sensitive to the volume content of Ni. The Ni-YSZ cermet containing 40 vol% Ni was ascertained to be the optimum composition. This composition offers sufficient open porosity of more than 30 %, superior electrical conductivities of 917.4 S/cm at $1000^{\circ}C$ and a moderate average thermal expansion coefficient of $12.6{\times}10^{-6}^{\circ}C^{-1}$ between room temperature and $1000^{\circ}C$.

Effects of Vth adjustment ion implantation on Switching Characteristics of MCT(MOS Controlled Thyristor) (문턱전압 조절 이온주입에 따른 MCT (MOS Controlled Thyristor)의 스위칭 특성 연구)

  • Park, Kun-Sik;Cho, Doohyung;Won, Jong-Il;Kwak, Changsub
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.5
    • /
    • pp.69-76
    • /
    • 2016
  • Current driving capability of MCT (MOS Controlled Thyristor) is determined by turn-off capability of conducting current, that is off-FET performance of MCT. On the other hand, having a good turn-on characteristics, including high peak anode current ($I_{peak}$) and rate of change of current (di/dt), is essential for pulsed power system which is one of major application field of MCTs. To satisfy above two requirements, careful control of on/off-FET performance is required. However, triple diffusion and several oxidation processes change surface doping profile and make it hard to control threshold voltage ($V_{th}$) of on/off-FET. In this paper, we have demonstrated the effect of $V_{th}$ adjustment ion implantation on the performance of MCT. The fabricated MCTs (active area = $0.465mm^2$) show forward voltage drop ($V_F$) of 1.25 V at $100A/cm^2$ and Ipeak of 290 A and di/dt of $5.8kA/{\mu}s$ at $V_A=800V$. While these characteristics are unaltered by $V_{th}$ adjustment ion implantation, the turn-off gate voltage is reduced from -3.5 V to -1.6 V for conducting current of $100A/cm^2$ when the $V_{th}$ adjustment ion implantation is carried out. This demonstrates that the current driving capability is enhanced without degradation of forward conduction and turn-on switching characteristics.

A Study on the Optimal Design of Soft X-ray Ionizer using the Monte Carlo N-Particle Extended Code (Monte Carlo N-Particle Extended 코드를 이용한 연X선 정전기제거장치의 최적설계에 관한 연구)

  • Jeong, Phil hoon;Lee, Dong Hoon
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.2
    • /
    • pp.34-37
    • /
    • 2017
  • In recent emerging industry, Display field becomes bigger and bigger, and also semiconductor technology becomes high density integration. In Flat Panel Display, there is an issue that electrostatic phenomenon results in fine dust adsorption as electrostatic capacity increases due to bigger size. Destruction of high integrated circuit and pattern deterioration occur in semiconductor and this causes the problem of weakening of thermal resistance. In order to solve this sort of electrostatic failure in this process, Soft X-ray ionizer is mainly used. Soft X-ray Ionizer does not only generate electrical noise and minute particle but also is efficient to remove electrostatic as it has a wide range of ionization. X-ray Generating efficiency has an effect on soft X-ray Ionizer affects neutralizing performance. There exist variable factors such as type of anode, thickness, tube voltage etc., and it takes a lot of time and financial resource to find optimal performance by manufacturing with actual X-ray tube source. MCNPX (Monte Carlo N-Particle Extended) is used for simulation to solve this kind of problem, and optimum efficiency of X-ray generation is anticipated. In this study, X-ray generation efficiency was measured according to target material thickness using MCNPX under the conditions that tube voltage is 5 keV, 10 keV, 15 keV and the target Material is Tungsten(W), Gold(Au), Silver(Ag). At the result, Gold(Au) shows optimum efficiency. In Tube voltage 5 keV, optimal target thickness is $0.05{\mu}m$ and Largest energy of Light flux appears $2.22{\times}10^8$ x-ray flux. In Tube voltage 10 keV, optimal target Thickness is $0.18{\mu}m$ and Largest energy of Light flux appears $1.97{\times}10^9$ x-ray flux. In Tube voltage 15 keV, optimal target Thickness is $0.29{\mu}m$ and Largest energy of Light flux appears $4.59{\times}10^9$ x-ray flux.

The Effect of Glass Fabric Separator Elongation on Electric Property in Structural Battery (유리섬유 분리막 인장으로 인한 구조전지의 전기적 물성 변화)

  • Shin, Jae-Sung;Park, Hyun-Wook;Park, Mi-Young;Kim, Chun-Gon;Kim, Soo-Hyun
    • Composites Research
    • /
    • v.30 no.1
    • /
    • pp.46-51
    • /
    • 2017
  • Structural battery has been researched extensively to combine the functions of the battery and structure without gravimetric or volumetric increments compared to their individual components. The main idea is to employ carbon fabric as the reinforcement and electrode, glass fabric as the separator, and solid-state electrolyte which can transfer load. However, state-of-the-art solid-state electrolytes do not have sufficient load carrying functionality and exhibiting appropriate ion conductivity simultaneously. Therefore, in this research, a system which has both battery and load carrying capabilities using glass fabric separator and liquid electrolyte was devised and tested to investigate the potential and feasibility of this structural battery system and observe electric properties. It was observed that elongating separator decreased electrical behavior stability. A possible cause of this phenomenon was the elongated glass fabric separator inadequately preventing the penetration of small particles of the cathode material into the anode. This problem was verified additionally by using a commercial separator. The characteristic of the glass fabric and the interface between the electrode and glass fabric needed to be further studied for the realization of such a load carrying structural battery system.

The Effect of Microcurrent Stimulation on Expression of BMP-4 After Tibia Fracture in Rabbits (미세전류가 토끼 경골의 골절 후 BMP-4 발현에 미치는 영향)

  • Cho, Mi-Suk
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.3
    • /
    • pp.196-203
    • /
    • 2010
  • This study aimed to examine the effect of microcurrent stimulation on expression of Bone Morphogenetic Protein(BMP) 4 after tibia fracture in rabbits. The twenty four adult 6 month old New Zealand white rabbits weighting 2.5~3.5 ㎏ were used. Twenty four rabbits with tibia fracture were randomly divided into control and experimental groups. Each group was divided into four subgroups, based on the duration of the experiment (3, 7, 14, 28 days). The experimental groups received microcurrent stimulation of 20~25 ${\mu}A$ intensity with surface Ag-AgCl electrode (diameter 1cm, Biopac, U.S.A.) for 24 hours a day. Cathode of the microcurrent stimulator located on the tibia directly, anode of it did on the gastrocnemius muscle. After evaluation, the test results are as follows: Comparisons of immunohistochemical observation of BMP-4 in 7 days after tibial fracture show that there was shown to be a moderate positive reaction (++) on concentric circles of Harversian system and the interstitial lamella in the control group, while there was a very strong positive reaction () on concentric circles of Harversian system and interstitial lamellain the experimental group. These results suggest that applying non-invasive constant microcurrent stimulation on fractured bone is helpful to bone healing.

Changes of DNA Fragmentation by Irradiation Doses and Storage in Gamma-Irradiated Fruits (감마선 조사 과일류에서 조사선량과 저장기간에 따른 DNA Fragmentation의 변화)

  • Kim, Sang-Mi;Park, Eun-Ju;Yang, Jae-Seung;Kang, Myung-Hee
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.31 no.4
    • /
    • pp.594-598
    • /
    • 2002
  • The changes in DNA damage were investigated during storage after irradiation. Kiwi, orange and pear were irradiated at 0.1, 0.3, 0.5, 0.7 and 1.0 kGy and stored for 3 months at 4$^{\circ}C$. The comet assay was applied to the sample seeds alt the beginning of irradiation and at the end of storage. Seeds were isolated and crushed, and the suspended cells were embedded in an agarose layer. After lysis of the cells, they were electrophoresed for 2 min and then stained. DNA fragmentation in seeds caused by irradiation was quantified as tail length and tail moment (tail length $\times$ % DNA in tail) by comet image analyzing system. Immediately after irradiation, the differences in tail length between unirradiated and irradiated fruit seeds were significant (p<0.05) in kiwi, orange and pear seeds. With in-creasing the irradiation doses, statistically significant longer extension of the DNA from the nucleus toward anode was observed. The results represented as tail moment showed similar tendency to those of tail length, but tile latter parameter was more sensitive than the former. Similarly even 3 months after irradiation, all the irradiated fruit seeds significantly showed longer tail length than the unirradiated controls. These results indicate that the comet assay could be one of the simple methods of detecting irradiated fruit seeds. Moreover, the method could detect DNA damage even after 3 months after irradiation.

Electrochemical Properties of Lithium Secondary Battery and the Synthesis of Spherical Li4Ti5O12 Powder by Using TiCl4 As a Starting Material (TiCl4를 출발원료로한 구형 Li4Ti5O12 분말합성 및 리튬이차 전지특성)

  • Choi, Byung-Hyun;Ji, Mi-Jung;Kwon, Yong-Jin;Kim, Eun-Kyung;Nahm, Sahn
    • Korean Journal of Materials Research
    • /
    • v.20 no.12
    • /
    • pp.669-675
    • /
    • 2010
  • One of the greatest challenges for our society is providing powerful electrochemical energy conversion and storage devices. Rechargeable lithium-ion batteries and fuel cells are among the most promising candidates in terms of energy and power density. As the starting material, $TiCl_4{\cdot}YCl_3$ solution and dispersing agent (HCP) were mixed and synthesized using ammonia as the precipitation agent, in order to prepare the nano size Y doped spherical $TiO_2$ precursor. Then, the $Li_4Ti_5O_{12}$ was synthesized using solid state reaction method through the stoichiometric mixture of Y doped spherical $TiO_2$ precursor and LiOH. The Ti mole increased the concentration of the spherical particle size due to the addition of HPC with a similar particle size distribution in a well in which $Li_4Ti_5O_{12}$ spherical particles could be obtained. The optimal synthesis conditions and the molar ratio of the Ti 0.05 mol reaction at $50^{\circ}C$ for 30 minutes and at $850^{\circ}C$ for 6 hours heat treatment time were optimized. $Li_4Ti_5O_{12}$ was prepared by the above conditions as a working electrode after generating the Coin cell; then, electrochemical properties were evaluated when the voltage range of 1.5V was flat, the initial capacity was 141 mAh/g, and cycle retention rate was 86%; also, redox reactions between 1.5 and 1.7V, which arose from the insertion and deintercalation of 0.005 mole of Y doping is not a case of doping because the C-rate characteristics were significantly better.

TiO2 Nanotubular Formation on Grade II Pure Titanium by Short Anodization Processing (Grade II 순수 타이타늄의 단시간 양극산화에 의한 TiO2 나노튜브 형성)

  • Lee, Kwangmin;Kim, Yongjae;Kang, Kyungho;Yoon, Duhyeon;Rho, Sanghyun;Kang, Seokil;Yoo, Daeheung;Lim, Hyunpil;Yun, Kwiduk;Park, Sangwon;Kim, Hyun Seung
    • Korean Journal of Materials Research
    • /
    • v.23 no.4
    • /
    • pp.240-245
    • /
    • 2013
  • Electrochemical surface treatment is commonly used to form a thin, rough, and porous oxidation layer on the surface of titanium. The purpose of this study was to investigate the formation of nanotubular titanium oxide arrays during short anodization processing. The specimen used in this study was 99.9% pure cp-Ti (ASTM Grade II) in the form of a disc with diameter of 15 mm and a thickness of 1 mm. A DC power supplier was used with the anodizing apparatus, and the titanium specimen and the platinum plate ($3mm{\times}4mm{\times}0.1mm$) were connected to an anode and cathode, respectively. The progressive formation of $TiO_2$ nanotubes was observed with FE-SEM (Field Emission Scanning Electron Microscopy). Highly ordered $TiO_2$ nanotubes were formed at a potential of 20 V in a solution of 1M $H_3PO_4$ + 1.5 wt.% HF for 10 minutes, corresponding with steady state processing. The diameters and the closed ends of $TiO_2$ nanotubes measured at a value of 50 cumulative percent were 100 nm and 120 nm, respectively. The $TiO_2$ nanotubes had lengths of 500 nm. As the anodization processing reached 10 minutes, the frequency distribution for the diameters and the closed ends of the $TiO_2$ nanotubes was gradually reduced. Short anodization processing for $TiO_2$ nanotubes of within 10 minutes was established.

Evaluation of Cell Components in Direct Formic Acid Fuel Cells (직접 개미산 연료전지의 구성요소 평가에 대한 연구)

  • Jung, Won Suk;Yoon, Sung Pil;Han, Jonghee;Nam, Suk Woo;Lim, Tae-Hoon;Oh, In-Hwan;Hong, Seong-Ahn
    • Korean Chemical Engineering Research
    • /
    • v.47 no.3
    • /
    • pp.362-367
    • /
    • 2009
  • Recently, the use of formic acid as a fuel for direct liquid fuel cells has emerged as a promising alternative to methanol. In the work presented herein, we evaluated direct formic acid fuel cells(DFAFCs) with various components under operating conditions, for example, the thickness of the proton exchange membrane, concentration of formic acid, gas diffusion layer, and commercial catalyst. The thickness of the proton exchange membrane influenced performance related to the fuel cross-over. To optimize the cell performance, we investigated on the proper concentration of formic acid and catalyst for the formic acid oxidation. Consequently, membrance-electrode assembly(MEA) consisted of $Nafion^{(R)}$-115 and the Pt-Ru black as a anode catalyst showed the maximum performance. This performance was superior to the DMFCs' one.