• Title/Summary/Keyword: Annular flow regime

Search Result 34, Processing Time 0.024 seconds

Experimental Study and Correlation Development of Critical Heat Flux under Low Pressure and Low Flow Condition

  • Kim, Hong-Chae;Baek, Won-Pil;Kim, Han-Kon;Chang, Soon-Heung
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05a
    • /
    • pp.356-361
    • /
    • 1997
  • To investigate parametric effect on CHF and to get CHF data, experimental study has been performed with vertical round tubes under the condition of low pressure and low flow (LPLF). Test sections are made of Inconel-625 tube and have the geometry of 8 and 10 mm in diameter, and 0.5 and 1.0 m in heated length. All experiments have been conducted at the pressure of under 9 bar, the mass flux of under 250 kg/$m^2$ and the inlet subcooling of 350 and 450 kJ/kg, for stable upward flow with water as a coolant. Flow regime analysis has been performed for obtained CHF data with Mishima's flow regime map, which reveals that most of the CHF occur in the annular-mist flow regime. General parametric trends of the collected CHF data are consistent with those of previous studies. However, for the pressure effect on CHF, two different are observed; For relatively high mass flux, CHF increases with pressure and far lower mass flux, CHF decrease with pressure. Using modern data regression tool, ACE algorithm, two new CHF correlations for LPLF condition are developed based on local condition and inlet condition, respectively. The developed CHF correlations show better prediction accuracy compared with existing CHF prediction methods.

  • PDF

Experiments on Condensation Heat Transfer Characteristics and Flow Regime Inside Microfin Tubes (마이크로핀관내 유동 양식과 응축 열전달 특성 연구)

  • 한동혁;이규정
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.7
    • /
    • pp.602-611
    • /
    • 2001
  • Experiments on the condensation heat transfer characteristics inside a smooth and a microfin tube with R410A/R22 are performed in this study. The test tubes 7/9.52 mm in outside diameters and 3m in length are used. Varying the mass flux of the refrigerant and the condensation temperatures, the average heat transfer coefficients and pressure drop are investigated. Most flows in this study are in the annular and/or wavy flow regime. It is shown that the heat transfer is enhanced and the pressure drops are larger in the microfin tube than the smooth tube. From the heat transfer enhancement coefficients and the pressure drops, it is found that the high heat transfer enhancement factors are obtained in the range of small mass flux while the penalty factors are almost equal. Experiments results show that average heat transfer coefficients of R410A is larger than that of R22 and pressure drop of R410A is less than R22.

  • PDF

VOID FRACTION PREDICTION FOR SEPARATED FLOWS IN THE NEARLY HORIZONTAL TUBES

  • AHN, TAE-HWAN;YUN, BYONG-JO;JEONG, JAE-JUN
    • Nuclear Engineering and Technology
    • /
    • v.47 no.6
    • /
    • pp.669-677
    • /
    • 2015
  • A mechanistic model for void fraction prediction with improved interfacial friction factor in nearly horizontal tubes has been proposed in connection with the development of a condensation model package for the passive auxiliary feedwater system of the Korean Advanced Power Reactor Plus. The model is based on two-phase momentum balance equations to cover various types of fluids, flow conditions, and inclination angles of the flow channel in a separated flow. The void fraction is calculated without any discontinuity at flow regime transitions by considering continuous changes of the interfacial geometric characteristics and interfacial friction factors across three typical separated flows, namely stratified-smooth, stratified-wavy, and annular flows. An evaluation of the proposed model against available experimental data covering various types of fluids and flow regimes showed a satisfactory agreement.

Numerical Simulation of Unsteady Flow Field behind Widely-Spaced Co-axial Jet using Random Vortex Method (RVM을 사용한 큰지름비 동축젯트의 비정상 수치해석)

  • 류명석;강성모;김용모
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.3
    • /
    • pp.130-138
    • /
    • 1996
  • The transient incompressible flow behind the widely-spaced co-axial jet is numerically simulated using the random vortex method(RVM). This numerical approach is based on the Lagrangian approach for the vorticity formulation of the unsteady Navier-Stokes equations, utilizing vortex elements to account for the convection and diffusion processes. The effects of the mass flow rate of an annular air jet and a central fuel jet on the co-axial jet flow dynamics is investigated. To validate the present procedure, the numerical results are compared with the available experimental data the present procedure, the numerical results are compared with the available experimental data in terms of the centerline and off-centerline profiles of the mean axial velocity. Discrepancies between the RVM results and the measurements are discussed in detail.

  • PDF

Solid-liquid two phase helica l flow in a Rotating Annulus (Slim hole 환형관내 고-액 2상 유동에 관한 연구)

  • Han, Sang-Mok;Woo, Nam-Sub;Hwang, Young-Kyu;Kim, Young-Ju
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.369-372
    • /
    • 2008
  • An experimental study is carried out to study two-phase vertically upward hydraulic transport of solid particles by water in a vertical and inclined (0${\sim}$60 degree) concentric annulus with rotation of the inner cylinder. Rheology of particulate suspensions in shear-thinning fluids is of importance in many applications such as particle removal from surfaces, transport of proppants in fractured reservoir and cleaning of drilling holes, and so on. Annular fluid velocities varied from 0.2 m/s to 1.5 m/s for the actual drilling operational condition. Macroscopic behavior of solid particles, averaged flow rate, and particle rising velocity are observed. Main parameters considered in this study were radius ratio, inner-pipe rotary speed, fluid flow regime, and particle injection rate. For both water and CMC solutions, the higher the concentration of the solid particles is, the larger the pressure gradients become

  • PDF

A Study on the Flow of Drilling Fluids in Slim hole Annuli (굴착유체의 Slim Hole 환형관 내 유동특성에 관한 연구)

  • Seo Byung-Taek;Woo Nam-Sub;Hwang Young-Kyu
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.4
    • /
    • pp.370-376
    • /
    • 2006
  • The paper concerns an experimental study of fully developed laminar flow of a Newtonian and non-Newtonian liquid in concentric annuli with combined bulk axial flow and inner cylinder rotation. Pressure losses and skin friction coefficients have been measured for Newtonian fluid, water and non-Newtonian fluids, 0.2% aqueous of sodium carboxymethyl cellulose (CMC) and 5% bentonite solutions, when the inner cylinder rotates at the speed of $0{\sim}500$ rpm. The influences of rotation, radius ratio and working fluid on the annular flow field are investigated. And the new correlations among the skin friction coefficient, the Reynolds number and the Rossby number are presented with reasonable limits of accuracy in laminar flow regime.

Self-Excited Noise Generation from Laminar Methane/Air Premixed Flames in Thin Annular JetsPut (환형제트에서의 메탄과 공기의 층류 예혼합 화염에서 발생되는 자발적인 소음에 대한 실험적 연구)

  • Jin, S.H.;Joung, J.H.;Kwon, S.J.;Chung, S.H.
    • 한국연소학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.159-165
    • /
    • 2003
  • Self-excited noise generation from laminar flames in thin annular jets of methane/air premixture has been investigated experimentally. Various flames were observed in this flow configuration, including conical shape flames, ring shape flames, steady crown shape flames, and oscillating crown shape flames. Self-excited noise with the total sound pressure level of about 70dB was generated from the oscillating crown shape flames for the equivalence ratio larger than 0.95. Sound pressure and $CH^{\ast}$ chemiluminescence were measured by using a microphone and a photomultiplier tube. The frequency of generated noise was measured as functions of equivalence ratio and premixture velocity. A frequency doubling phenomena have also been observed. The measured $CH^{\ast}$ chemiluminescence data were analyzed from which the corresponding sound pressure has been calculated. By comparing the data with those of measured ones, the noise source can be attributed to the flame front fluctuation near the edge of the oscillating crown-shape flames. The flame stability regime was influenced sensitively to the supplying air through the inner tube.

  • PDF

Counter-Current Gas-Liquid Two-Phase Flow in Narrow Rectangular Channels with Offset Strip Fins (휜이 있는 협소 사각 유로에서 대향류 기/액 2상 유동)

  • Sohn, B.H.;Kim, B.J.;Jeong, S.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.229-234
    • /
    • 2001
  • An adiabatic counter-current vertical two-phase flow of air and water in narrow rectangular channels with offset strip fm was investigated experimentally. Tests were systematically performed with downward liquid superficial velocities and upward gas velocities covering 0 to 0.06 m/s and 0 to 2.5 m/s ranges, respectively. Two-phase flow regimes were classified by examining the video images of flow patterns in transparent test sections of 760 mm long and 100 mm wide channel with gaps of 3.0 and 5.0 mm. The channel average void fraction was measured by the quick-closing valve method. Unlike the flow regimes in the channels without fin, where bubbly, slug, chum, and annular flow were identified, only bubbly and chum flow regimes were found for the channels with offset strip fin. However the existence of fin in the channels showed negligible effects on the void fraction. Instead counter-current flow limitations were found to happen at lower air superficial velocity once offset strip fin was introduced in narrow rectangular channels.

  • PDF

A Study on the Multiphase Flow Characteristics in an Mud System (머드시스템의 다상 유동 특성 연구)

  • Lee, Wang-Do;Han, Sang-Mok;Chun, Joong-Ho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.6_2
    • /
    • pp.737-744
    • /
    • 2021
  • An investigation is conducted to study a solid-liquid mixture vertically upward hydraulic transport of solid particles by non-Newtonian fluids in the Mud system. Rheology of particulate suspensions in viscoelastic fluids is of importance in many applications such as particle removal from surfaces, transport of proppants in fractured reservoir and cleaning of drilling holes, etc. In this study a clear acrylic pipe was used in order to observe the movement of solid particles. Annular velocities varied from 0.4 m/s to 1.2 m/s. The mud systems which were utilized included aqueous solution of sodium carboxymethyl cellulose (CMC) solutions. Main parameters considered in the study were inner-pipe rotary speed, fluid flow regime and particle injection rate. Solid volumetric concentration and pressure drops were measured for the various parameters such as inclination angle, flow rate, and rotational speed of inner cylinder.

A Visual Study on Nucleate Boiling Phenomena in a Closed Two-Phase Thermosyphon (밀폐형 2상 열사이폰내의 비등현상에 관한 가시화 연구)

  • 강환국;오광헌;김철주;박이동;황영규
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1995.05a
    • /
    • pp.185-198
    • /
    • 1995
  • This is an experimental study conducted to visualize the nucleate boiling phenomena and flow regimes occurring inside the liquid pool in a closed two-phase thermosyphon. To meet this purpose, an annular-type thermosyphon was designed and manufactured using a glass tube and a stainless steel tube, being assembled axisymmetrically. The heat to be supplied to the working fluid is generated within a very thin layer of stainless steel tube wall by applying a high frequency electromagnetic field through the induction coil, axisymmetrically set around the evaporator zone. Some important results were as follows ; 1) Considering the structural complexity of the tested thermosyphon, it showed good performance for the range of heat flux 2< q" <25kW/$m^2$ and saturation vapor pressure, 0.1<Pv<1.1bar 2) different type of nucleating boiling regimes were observed as described below, -Pulse boiling regime : Flow pattern changed cyclically with time during 1 cycle of pulse boiling process. The onset of Nucleation was followed by expulsive growing of vapor bubble, resulting in the so called blow-up phenomenon, massive expulsion of large amount of liquid around the bubble. -Transient : Some spherical vapor bobbles were observed growing out from 2~3 nucleating sites, that was dispersed at the lower part of the heated tube wall in the liquid pool. But the rest upper region above the nucleating sites were filled with churns or bubbles of vapor. -Continuous nucleate boiling regime : The whole zone of evaporator was filled with lots of spherical vapor bubbles, and the bubbles showed tendency to decrease in diameter as the heat flux increased.ased.

  • PDF