• Title/Summary/Keyword: Annular Channel

Search Result 54, Processing Time 0.028 seconds

Return Vane Installed in Multistage Centrifugal Pump

  • Miyano, Masafumi;Kanemoto, Toshiaki;Kawashima, Daisuke;Wada, Akihiro;Hara, Takashi;Sakoda, Kazuyuki
    • International Journal of Fluid Machinery and Systems
    • /
    • v.1 no.1
    • /
    • pp.57-63
    • /
    • 2008
  • To optimize the stationary components in the multistage centrifugal pump, the effects of the return vane profile on the performances of the multistage centrifugal pump were investigated experimentally, taking account of the inlet flow conditions for the next stage impeller. The return vane, whose trailing edge is set at the outer wall position of the annular channel downstream of the vane and which discharges the swirl-less flow, gives better pump performances. By equipping such return vane with the swirl stop set from the trailing edge to the main shaft position, the unstable head characteristics can be also suppressed successfully at the lower discharge. Taking the pump performances and the flow conditions into account, the impeller blade was modified so as to get the shock-free condition where the incidence angle is zero at the inlet.

The Improvement of the Heat Exchanger Performance by Shape Modifieation(II) (형상변화 에 의한 열교환기 의 열전달 성능 향상 (II))

  • 노승탁;이택식;강신형;이은현;송명호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.2
    • /
    • pp.202-212
    • /
    • 1985
  • Numerical and experimental studies are presented for turbulent flows and heat transfer in annular channel with circumferential fins on the inner tube in a double pipe heat exchanger. Flow and heat transfer characteristics are periodically fully developed, and complex flow patterns are shown. Numerical calculations are executed by using modified TEACH-2E computer program based on the standard k-.epsilon. turbulence model. Mean velocity, turbulent kinetic energy, and Reynolds stress distributions are measured with the hot wire anemometer. Static pressures on the outer wall of the pipe are measured for three pitch-height ratios and several Reynolds numbers. Numerical predictions generally show reasonable results in comparison with experimental results. When the pitch-height ratio is about 5.0 and other geometric parameters are fixed in this paper, maximum heat transfer is achieved. Reattaching flow patterns appeared in this region. As the pitch between fins is increased beyond 5.0, mean Nusselt numbers are decreased and the pressure drop through one pitch almost remains.

1-D Two-phase Flow Investigation for External Reactor Vessel Cooling (원자로 용기 외벽냉각을 위한 1차원 이상유동 실험 및 해석)

  • Kim, Jae-Cheol;Park, Rae-Joon;Cho, Young-Rho;Kim, Sang-Baik;Kim, Sin;Ha, Kwang-Soon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.5
    • /
    • pp.482-490
    • /
    • 2007
  • When a molten corium is relocated in a lower head of a reactor vessel, the ERVC (External Reactor Vessel Cooling) system is actuated as coolant is supplied into a reactor cavity to remove a decay heat from the molten corium during a severe accident. To achieve this severe accident mitigation strategy, the two-phase natural circulation flow in the annular gap between the external reactor vessel and the insulation should be formed sufficiently by designing the coolant inlet/outlet area and gap size adequately on the insulation device. For this reason, one-dimensional natural circulation flow tests and the simple analysis were conducted to estimate the natural circulation flow under the ERVC condition of APR1400. The experimental facility is one-dimensional and scaled down as the half height and 1/238 channel area of the APR1400 reactor vessel. The calculated circulation flow rate was similar to experimental ones within about ${\pm}$15% error bounds and depended on the form loss due to the inlet/outlet area.

CRITICAL HEAT FLUX FOR DOWNWARD-FACING BOILING ON A COATED HEMISPHERICAL VESSEL SURROUNDED BY AN INSULATION STRUCTURE

  • Yang, J.;Cheung, F.B.;Rempe, J.L.;Suh, K.Y.;Kim, S.B.
    • Nuclear Engineering and Technology
    • /
    • v.38 no.2
    • /
    • pp.139-146
    • /
    • 2006
  • An experimental study was performed to evaluate the effects of surface coating and an enhanced insulation structure on the downward facing boiling process and the critical heat flux on the outer surface of a hemispherical vessel. Steady-state boiling tests were conducted in the Subscale Boundary Layer Boiling (SBLB) facility using an enhanced vessel/insulation design for the cases with and without vessel coatings. Based on the boiling data, CHF correlations were obtained for both plain and coated vessels. It was found that the nucleate boiling rates and the local CHF limits for the case with micro-porous layer coating were consistently higher than those values for a plain vessel at the same angular location. The enhancement in the local CHF limits and nucleate boiling rates was mainly due to the micro-porous layer coating that increased the local liquid supply rate toward the vaporization sites on the vessel surface. For the case with thermal insulation, the local CHF limit tended to increase from the bottom center at first, then decrease toward the minimum gap location, and finally increase toward the equator. This non-monotonic behavior, which differed significantly from the case without thermal insulation, was evidently due to the local variation of the two-phase motions in the annular channel between the test vessel and the insulation structure.

Preliminary Experimental Study on the Two-phase Flow Characteristics in a Natural Circulation Loop (자연순환 루프에서 이상유동 특성에 관한 예비실험 연구)

  • Kim, Jae-Cheol;Ha, Kwang-Soon;Park, Rae-Joon;Hong, Seong-Wan;Kim, Sang-Baik
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.308-311
    • /
    • 2008
  • As a severe accident mitigation strategy in a nuclear power plant, ERVC(External Reactor Vessel Cooling) has been proposed. Under ERVC conditions, where a molten corium is relocated in a reactor vessel lower head, a natural circulation two-phase flow is driven in the annular gap between the reactor vessel wall and its insulation. This flow should be sufficient to remove the decay heat of the molten corium and maintain the integrity of the reactor vessel. Preliminary experimental study was performed to estimate the natural circulation two-phase flow. The experimental facility which is one dimensional, the half height, and the 1/238 channel area of APR1400, was prepared and the experiments were carried out to estimate the natural circulation two-phase flow with varying the parameters of the coolant inlet area, the heat rate, and the coolant inlet subcooling. In results, the periodic circulation flow was observed and the characteristics were varied from the experimental parameters. The frequency of the natural circulation flow rate increased as the wall heat flux increased.

  • PDF

The effect of mold rotation on solidification process of an Al-Cu alloy (주형의 회전이 Al-Cu 합금의 응고과정에 미치는 영향)

  • Yu, Ho-Seon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.4
    • /
    • pp.525-540
    • /
    • 1997
  • The effect of mold rotation on the transport process and resultant macrosegregation pattern during solidification of an Al-Cu alloy contained in a vertical axisymmetric annular mold cooled from the inner wall is numerically investigated. The mold initially at rest starts to rotate at a prescribed angular velocity simultaneously with the beginning of cooling. Computed results for a representative case show that the mold rotation essentially suppresses the development of both thermal and solutal convections in the melt, creating distinct characteristics such as the liquidus front, flow pattern and temperature distribution from those for the stationary mold. Thermal convection which develops at the early stages of cooling is soon extinguished by the rotating flow induced during spin-up, and thus does not effectively remove the initial superheat from the melt. On the other hand, solutal convection, though it weakens considerably and is confined within the mushy zone, still predominates over the solute redistribution process. With increasing the angular velocity, the solute transport in the axial direction is enhanced, whereas that in the radial direction is reduced. The final macrosegregation formed in the mold rotating at moderate angular velocities appears to be favorable in comparison with the stationary casting, in that not only relatively homogenized composition is achieved, but also a severely positive-segregated channel is restrained.

Manufacturing of the Linear Induction EM Pump for the Liquid Sodium (액체소듐 구동용 선형유동전자펌프 제작)

  • 김희령;남호윤;황중선
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.434-437
    • /
    • 1999
  • An EM pump is used for the purpose of transporting the electrically conducting liquid sodium of the high temperature that is used as a coolant in the liquid metal reactor. In the present study, the pilot pump has been designed and manufactured for the high temperature of $600^{\circ}C$ by the equivalent circuit materials and the consideration of the materials and functions. The length and diameter of the pump are given as 84 cm and 10 cm each due to the fixed geometry of the circulation system to be installed. The characteristic of the developing pressure and efficiency is found out by using Laithewaite\`s standard design formula. It is shown that the developing pressure and efficiency are maximized at the frequency of 15 Hz from the curve. The annular channel gap of 3.95 mm is selected in the range of the reasonable hydraulic frictional loss. The components of the pump consist of the material for the high temperature. And then, the pump is manufactured to have the nominal flowrate of 40 1/min and developing Pressure of 1.3 bar.

  • PDF

Superheated Water-Cooled Small Modular Underwater Reactor Concept

  • Shirvan, Koroush;Kazimi, Mujid
    • Nuclear Engineering and Technology
    • /
    • v.48 no.6
    • /
    • pp.1338-1348
    • /
    • 2016
  • A novel fully passive small modular superheated water reactor (SWR) for underwater deployment is designed to produce 160 MWe with steam at $500^{\circ}C$ to increase the thermodynamic efficiency compared with standard light water reactors. The SWR design is based on a conceptual 400-MWe integral SWR using the internally and externally cooled annular fuel (IXAF). The coolant boils in the external channels throughout the core to approximately the same quality as a conventional boiling water reactor and then the steam, instead of exiting the reactor pressure vessel, turns around and flows downward in the central channel of some IXAF fuel rods within each assembly and then flows upward through the rest of the IXAF pins in the assembly and exits the reactor pressure vessel as superheated steam. In this study, new cladding material to withstand high temperature steam in addition to the fuel mechanical and safety behavior is investigated. The steam temperature was found to depend on the thermal and mechanical characteristics of the fuel. The SWR showed a very different transient behavior compared with a boiling water reactor. The inter-play between the inner and outer channels of the IXAF was mainly beneficial except in the case of sudden reactivity insertion transients where additional control consideration is required.

Heat Transfer Characteristics of an Internally-Heated Annulus Cooled with R-134a Near the Critical Pressure

  • Hong, Sung-Deok;Chun, Se-Young;Kim, Se-Yun;Baek, Won-Pil
    • Nuclear Engineering and Technology
    • /
    • v.36 no.5
    • /
    • pp.403-414
    • /
    • 2004
  • An experimental study of heat transfer characteristics near the critical pressure has been performed with an internally-heated vertical annular channel cooled by R-134a fluid. Two series of tests have been completed: (a) steady-state critical heat flux (CHF) tests, and (b) heat transfer tests for pressure reduction transients through the critical pressure. In the present experimental range, the steady-state CHF decreases with increase of the system pressure for fixed inlet mass flux and subcooling. The CHF falls sharply at about 3.8 MPa and shows a trend towards converging to zero as the pressure approaches the critical point of 4.059 MPa. The CHF phenomenon near the critical pressure does not lead to an abrupt temperature rise of the heated wall, because the CHF occurs at remarkably low power levels. In the pressure reduction transients, as soon as the pressure passes below the critical pressure from the supercritical pressure, the wall temperatures rise rapidly up to very high values due to the departure from nucleate boiling. The wall temperature reaches a maximum at the saturation point of the outlet temperature, and then tends to decrease gradually.

DESIGN AND APPLICATION OF A SINGLE-BEAM GAMMA DENSITOMETER FOR VOID FRACTION MEASUREMENT IN A SMALL DIAMETER STAINLESS STEEL PIPE IN A CRITICAL FLOW CONDITION

  • Park, Hyun-Sik;Chung, Chang-Hwan
    • Nuclear Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.349-358
    • /
    • 2007
  • A single-beam gamma densitometer is utilized to measure the average void fraction in a small diameter stainless steel pipe under critical flow conditions. A typical design of a single-beam gamma densitometer is composed of a sealed gammaray source, a collimator, a scintillation detector, and a data acquisition system that includes an amplifier and a single channel analyzer. It is operated in the count mode and can be calibrated with a test pipe and various types of phantoms made of polyethylene. A good average void fraction is obtained for a small diameter pipe with various flow regimes of the core, annular, stratified, and bubbly flows. Several factors influencing the performance of the gamma densitometer are examined, including the distance between the source and the detector, the measuring time, and the ambient temperature. The void fraction is measured during an adiabatic downward two-phase critical flow in a vertical pipe. The test pipe has an inner diameter of 10.9 mm and a thickness of 3.2 mm. The average void fraction was reasonably measured for a two-phase critical flow in the presence of nitrogen gas.